Linear Algebra review (optional) 线代复习(选学)
Matrices and Vectors 矩阵和向量
Matrix
-
Definition: Rectangle array of numbers. 矩阵是矩形数字数组
-
Dimension of matrix: number of rows ( imes) number of columns.
矩阵的维度:行数 ( imes) 列数,如2 ( imes) 3的矩阵,4 ( imes) 2的矩阵…
-
Matrix Element(entries if matrix): (A_{ij}) = "(i, j) entry" in the (i^{th}) row, (j^{th}) column.
Vector
- Definition: An n ( imes) 1 matrix. 向量是一个n ( imes) 1的矩阵
- Also called: n-dimensional vector. 也叫作n维向量
- Vector Element: (y_i = i^{th}) element.
Addition and Scalar Multiplication 加法和标量乘法运算
Matrix Addition
Scalar Multiplication
Combination of Operands
Matrix Vector Multiplication 矩阵和向量的乘法
Matrix Matrix Multiplication 矩阵和矩阵的乘法
House sizes:
[2104, 1416, 1534, 852]
Have 3 competing hypotheses:
- (h_{ heta}(x) = -40 + 0.25 imes x)
- (h_{ heta}(x) = 200 + 0.1 imes x)
- (h_{ heta}(x) = -150 + 0.4 imes x)
Matrix:
( left[ egin{matrix} 1 & 2104 \ 1 & 1416 \ 1 & 1534 \ 1 & 852 end{matrix} ight] ) ( imes) ( left[ egin{matrix} -40 & 200 & -150 \ 0.25 & 0.1 & 0.4 \ end{matrix} ight] ) = ( left[ egin{matrix} 486 & 410 & 692 \ 314 & 342 & 416 \ 344 & 353 & 464 \ 173 & 285 & 191 end{matrix} ight] )
Matrix Multiplication Properties 矩阵乘法的特性
不满足交换律:A ( imes) B ( eq) B ( imes) A (单位矩阵除外)
满足结合律:A ( imes) (B ( imes) C) = (A ( imes) B) ( imes) C
Inverse and Transpose 矩阵的逆运算和转置运算
Matrix inverse: 矩阵的逆
If A is an m ( imes) m matrix, and if it has an inverse, (AA^{-1} = A^{-1}A = E).
Matrix Transpose: 矩阵的转置
Let A be an m ( imes) n matrix, and let (B =) (A^T).
Then B is an n ( imes) m matrix, and (B_{ij} = A_{ji}).
Example:
(A =) ( left[ egin{matrix} 1 & 2 & 0 \ 3 & 5& 9 \ end{matrix} ight] ), $B = A^T = $ ( left[ egin{matrix} 1 & 3 \ 2 & 5 \ 0 & 9 \ end{matrix} ight] )