zoukankan      html  css  js  c++  java
  • 线性时间的排序算法

       前面已经介绍了几种排序算法,像插入排序(直接插入排序,折半插入排序,希尔排序)、交换排序(冒泡排序,快速排序)、选择排序(简单选择排序,堆排序)、2-路归并排序(见我的另一篇文章:各种内部排序算法的实现)等,这些排序算法都有一个共同的特点,就是基于比较。本文将介绍三种非比较的排序算法:计数排序,基数排序,桶排序。它们将突破比较排序的Ω(nlgn)下界,以线性时间运行。

    一、比较排序算法的时间下界

    所谓的比较排序是指通过比较来决定元素间的相对次序。

    “定理:对于含n个元素的一个输入序列,任何比较排序算法在最坏情况下,都需要做Ω(nlgn)次比较。

    也就是说,比较排序算法的运行速度不会快于nlgn,这就是基于比较的排序算法的时间下界

    通过决策树(Decision-Tree)可以证明这个定理,关于决策树的定义以及证明过程在这里就不赘述了。你可以自己去查找资料,推荐观看《MIT公开课:线性时间排序》。

    根据上面的定理,我们知道任何比较排序算法的运行时间不会快于nlgn。那么我们是否可以突破这个限制呢?当然可以,接下来我们将介绍三种线性时间的排序算法,它们都不是通过比较来排序的,因此,下界Ω(nlgn)对它们不适用。

    二、计数排序(Counting Sort)

    计数排序的基本思想就是对每一个输入元素x,确定小于x的元素的个数,这样就可以把x直接放在它在最终输出数组的位置上,例如:

    算法的步骤大致如下:

    • 找出待排序的数组中最大和最小的元素

    • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项

    • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)

    • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

    C++代码

    /*************************************************************************
        > File Name: CountingSort.cpp
        > Author: SongLee
        > E-mail: lisong.shine@qq.com
        > Created Time: 2014年06月11日 星期三 00时08分55秒
        > Personal Blog: http://songlee24.github.io
     ************************************************************************/
    #include<iostream>
    using namespace std;
    
    /*
     *计数排序:A和B为待排和目标数组,k为数组中最大值,len为数组长度
     */
    void CountingSort(int A[], int B[], int k, int len)
    {
        int C[k+1];
        for(int i=0; i<k+1; ++i)
            C[i] = 0;
        for(int i=0; i<len; ++i)
            C[A[i]] += 1;
        for(int i=1; i<k+1; ++i)
            C[i] = C[i] + C[i-1];
        for(int i=len-1; i>=0; --i)
        {
            B[C[A[i]]-1] = A[i];
            C[A[i]] -= 1;
        }
    }
    
    /* 输出数组 */
    void print(int arr[], int len)
    {
        for(int i=0; i<len; ++i)
            cout << arr[i] << " ";
        cout << endl;
    }
    
    /* 测试 */
    int main()
    {
        int origin[8] = {4,5,3,0,2,1,15,6};
        int result[8];
        print(origin, 8);
        CountingSort(origin, result, 15, 8);
        print(result, 8);
        return 0;
    }
    当输入的元素是0到k之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k)。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法。计数排序是一个稳定的排序算法。

    可能你会发现,计数排序似乎饶了点弯子,比如当我们刚刚统计出C,C[i]可以表示A中值为i的元素的个数,此时我们直接顺序地扫描C,就可以求出排序后的结果。的确是这样,不过这种方法不再是计数排序,而是桶排序,确切地说,是桶排序的一种特殊情况。

    三、桶排序(Bucket Sort)

    桶排序(Bucket Sort)的思想是将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法)。当要被排序的数组内的数值是均匀分配的时候,桶排序可以以线性时间运行。桶排序过程动画演示:Bucket Sort,桶排序原理图如下:

    C++代码

    /*************************************************************************
        > File Name: BucketSort.cpp
        > Author: SongLee
        > E-mail: lisong.shine@qq.com
        > Created Time: 2014年06月11日 星期三 09时17分32秒
        > Personal Blog: http://songlee24.github.io
     ************************************************************************/
    #include<iostream>
    using namespace std;
    
    /* 节点 */
    struct node
    {
        int value;
        node* next;
    };
    
    /* 桶排序 */
    void BucketSort(int A[], int max, int len)
    {
        node bucket[len];
        int count=0;
        for(int i=0; i<len; ++i)
        {
            bucket[i].value = 0;
            bucket[i].next = NULL;
        }
        
        for(int i=0; i<len; ++i)
        {
            node *ist = new node();
            ist->value = A[i];
            ist->next = NULL;
            int idx = A[i]*len/(max+1); // 计算索引
            if(bucket[idx].next == NULL)
            {
                bucket[idx].next = ist;
            }
            else /* 按大小顺序插入链表相应位置 */
            {
                node *p = &bucket[idx];
                node *q = p->next;
                while(q!=NULL && q->value <= A[i])
                {
                    p = q;
                    q = p->next;
                }
                ist->next = q;
                p->next = ist;
            }
        }
    
        for(int i=0; i<len; ++i)
        {
            node *p = bucket[i].next;
            if(p == NULL)
                continue;
            while(p!= NULL)
            {
                A[count++] = p->value;
                p = p->next;
            }
        }
    }
    
    /* 输出数组 */
    void print(int A[], int len)
    {
        for(int i=0; i<len; ++i)
            cout << A[i] << " ";
        cout << endl;
    }
    
    /* 测试 */
    int main()
    {
        int row[11] = {24,37,44,12,89,93,77,61,58,3,100};
        print(row, 11);
        BucketSort(row, 235, 11);
        print(row, 11);
        return 0;
    }

    四、基数排序(Radix Sort)

    基数排序(Radix Sort)是一种非比较型排序算法,它将整数按位数切割成不同的数字,然后按每个位分别进行排序。基数排序的方式可以采用MSD(Most significant digital)或LSD(Least significant digital),MSD是从最高有效位开始排序,而LSD是从最低有效位开始排序。

    当然我们可以采用MSD方式排序,按最高有效位进行排序,将最高有效位相同的放到一堆,然后再按下一个有效位对每个堆中的数递归地排序,最后再将结果合并起来。但是,这样会产生很多中间堆。所以,通常基数排序采用的是LSD方式。

    LSD基数排序实现的基本思路是将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。需要注意的是,对每一个数位进行排序的算法必须是稳定的,否则就会取消前一次排序的结果。通常我们使用计数排序或者桶排序作为基数排序的辅助算法。基数排序过程动画演示:Radix Sort

    C++实现(使用计数排序)

    /*************************************************************************
        > File Name: RadixSort.cpp
        > Author: SongLee
        > E-mail: lisong.shine@qq.com
        > Created Time: 2014年06月22日 星期日 12时04分37秒
        > Personal Blog: http://songlee24.github.io
     ************************************************************************/
    #include<iostream>
    using namespace std;
    
    // 找出整数num第n位的数字
    int findIt(int num, int n)
    {
        int power = 1;
        for (int i = 0; i < n; i++)
        {
            power *= 10;
        }
        return (num % power) * 10 / power;
    }
    
    // 基数排序(使用计数排序作为辅助)
    void RadixSort(int A[], int len, int k)
    {
        for(int i=1; i<=k; ++i)
        {
            int C[10] = {0};   // 计数数组
            int B[len];        // 结果数组
    
            for(int j=0; j<len; ++j)
            {
                int d = findIt(A[j], i);
                C[d] += 1;
            }
    
            for(int j=1; j<10; ++j)
                C[j] = C[j] + C[j-1];
    
            for(int j=len-1; j>=0; --j)
            {
                int d = findIt(A[j], i);
                C[d] -= 1;
                B[C[d]] = A[j];
            }
            
            // 将B中排好序的拷贝到A中
            for(int j=0; j<len; ++j)
                A[j] = B[j];
        }
    }
    
    // 输出数组
    void print(int A[], int len)
    {
        for(int i=0; i<len; ++i)
            cout << A[i] << " ";
        cout << endl;
    }
    
    // 测试
    int main()
    {
        int A[8] = {332, 653, 632, 5, 755, 433, 722, 48};
        print(A, 8);
        RadixSort(A, 8, 3);
        print(A, 8);
        return 0;
    }
    基数排序的时间复杂度是 O(k·n),其中n是排序元素个数,k是数字位数。注意这不是说这个时间复杂度一定优于O(nlgn),因为n可能具有比较大的系数k。

    另外,基数排序不仅可以对整数排序,也可以对有多个关键字域的记录进行排序。例如,根据三个关键字年、月、日来对日期进行排序。


  • 相关阅读:
    css 伪类
    tornado 作业 简单首页 登录页 个人中心
    tornado 作业 自定义模板 UIMethod以UIModule
    tornado 网页提交内容 展示内容作业
    tornado
    javascript
    廖雪峰官网学习js 数组
    廖雪峰官网学习js 字符串
    廖雪峰官网学习js 数据类型和变量
    协程gevent学习
  • 原文地址:https://www.cnblogs.com/songlee/p/5738142.html
Copyright © 2011-2022 走看看