TensorFlow逻辑回归
逻辑回归可以看作只有一层网络的前向神经网络,并且参数连接的权重只是一个值,而非矩阵。公式为:y_predict=logistic(X*W+b),其中X为输入,W为输入与隐含层之间的权重,b为隐含层神经元的偏置,而logistic为激活函数,一般为sigmoid或者tanh,y_predict为最终预测结果。
逻辑回归是一种分类器模型,需要函数不断的优化参数,这里目标函数为y_predict与真实标签Y之间的L2距离,使用随机梯度下降算法来更新权重和偏置。
源代码:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.environ["CUDA_VISIBLE_DEVICES"]="0" mnist=input_data.read_data_sets("/home/yxcx/tf_data",one_hot=True) #Parameters learning_rate=0.01 training_epochs=25 batch_size=100 display_step=1 #tf Graph Input x=tf.placeholder(tf.float32,[None,784]) y=tf.placeholder(tf.float32,[None,10]) #Set model weights W=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10])) #Construct model pred=tf.nn.softmax(tf.matmul(x,W)+b) #Minimize error using cross entropy cost=tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1)) #Gradient Descent optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Initialize the variables init=tf.global_variables_initializer() #Start training with tf.Session() as sess: sess.run(init) #Training cycle for epoch in range(training_epochs): avg_cost=0 total_batch=int(mnist.train.num_examples/batch_size) # loop over all batches for i in range(total_batch): batch_xs,batch_ys=mnist.train.next_batch(batch_size) #Fit training using batch data _,c=sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys}) #Conpute average loss avg_cost+= c/total_batch if (epoch+1) % display_step==0: print("Epoch:",'%04d' % (epoch+1),"Cost:" ,"{:.09f}".format(avg_cost)) print("Optimization Finished!") #Test model correct_prediction=tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) # Calculate accuracy for 3000 examples accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print("Accuracy:",accuracy.eval({x:mnist.test.images[:3000],y:mnist.test.labels[:3000]}))
结果截图: