zoukankan      html  css  js  c++  java
  • Pytorch LogisticRegressionModel BC

    import torch
    import torch.nn.functional as F
    x_data = torch.Tensor([[1.0], [2.0], [3.0]])
    y_data = torch.Tensor([[0], [0], [1]])


    #-------------------------------------------------------#
    class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
    super(LogisticRegressionModel, self).__init__()
    self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
    y_pred = torch.sigmoid(self.linear(x))
    return y_pred

    model = LogisticRegressionModel()
    #-------------------------------------------------------#
    criterion = torch.nn.BCELoss(size_average=False)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
    #-------------------------------------------------------#


    for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()


    import numpy as np
    import matplotlib.pyplot as plt

    x = np.linspace(0,10,200)
    x_t = torch.Tensor(x).view((200,1))
    y_t = model(x_t)
    y = y_t.data.numpy()
    plt.plot(x,y)
    plt.plot([0,10],[0.5,0.5],c='r')
    plt.xlabel('Hours')
    plt.ylabel('Probability of Pass')
    plt.grid()
    plt.show()
  • 相关阅读:
    记录操作日志
    sql优化【转】
    JS事件
    MFC电子词典
    控制台电子词典---链表
    控制台电子词典
    贪吃蛇
    十六进制转化
    进程线程
    面试体复习
  • 原文地址:https://www.cnblogs.com/songyuejie/p/14941604.html
Copyright © 2011-2022 走看看