zoukankan      html  css  js  c++  java
  • [译]从列表或字典创建Pandas的DataFrame对象

    原文来源:http://pbpython.com/pandas-list-dict.html

    介绍

    每当我使用pandas进行分析时,我的第一个目标是使用众多可用选项中的一个将数据导入Pandas的DataFrame 。
    对于绝大多数情况下,我使用的 read_excel , read_csv 或 read_sql 。

    但是,有些情况下我只需要几行数据或包含这些数据里的一些计算。
    在这些情况下,了解如何从标准python列表或字典创建DataFrames会很有帮助。
    基本过程并不困难,但因为有几种不同的选择,所以有助于理解每种方法的工作原理。
    我永远记不住我是否应该使用 from_dict , from_records , from_items 或默认的 DataFrame 构造函数。
    通常情况下,通过一些反复试验和错误,我能搞定它。但由于它仍然让我感到困惑,我想我会通过以下几个例子来澄清这些不同的方法。
    在本文的最后,我简要介绍了在生成Excel报表时如何使用它。

    从Python的数据结构中生成DataFrame

    您可以使用多种方法来获取标准python数据结构并创建Pandas的DataFrame。
    出于这些示例的目的,我将为3个虚构公司创建一个包含3个月销售信息的DataFrame。

    字典

    在展示下面的示例之前,我假设已执行以下导入:

    import pandas as pd
    from collections import OrderedDict
    from datetime import date
    

    从python创建DataFrame的“默认”方式是使用字典列表。在这种情况下,每个字典键用于列标题。将自动创建默认索引:

    sales = [{'account': 'Jones LLC', 'Jan': 150, 'Feb': 200, 'Mar': 140},
             {'account': 'Alpha Co',  'Jan': 200, 'Feb': 210, 'Mar': 215},
             {'account': 'Blue Inc',  'Jan': 50,  'Feb': 90,  'Mar': 95 }]
    df = pd.DataFrame(sales)
    


    如您所见,这种方法非常“面向行”。如果您想以“面向列”的方式创建DataFrame,您可以使用 from_dict

    sales = {'account': ['Jones LLC', 'Alpha Co', 'Blue Inc'],
             'Jan': [150, 200, 50],sheng cheng
             'Feb': [200, 210, 90],
             'Mar': [140, 215, 95]}
    df = pd.DataFrame.from_dict(sales)
    

    使用此方法,您可以获得与上面相同的结果。需要考虑的关键点是哪种方法更容易理解您独特的使用场景。
    有时,以面向行的方式获取数据更容易,而其他时候以列为导向的则更容易。
    了解这些选项将有助于使您的代码更简单,更易于理解,以满足您的特定需求。

    大多数人会注意到列的顺序看起来不对。这个问题出现的原因是标准的python字典不保留其键的顺序。
    如果要控制列顺序,则有两种方式。

    第一种,您可以手动重新排序列:

    df = df[['account', 'Jan', 'Feb', 'Mar']]
    

    或者你可以使用python中的OrderedDict 创建你的有序字典 。

    sales = OrderedDict([ ('account', ['Jones LLC', 'Alpha Co', 'Blue Inc']),
              ('Jan', [150, 200, 50]),
              ('Feb',  [200, 210, 90]),
              ('Mar', [140, 215, 95]) ] )
    df = pd.DataFrame.from_dict(sales)
    

    这两种方法都会按照您可能期望的顺序为您提供结果。

    由于我在下面概述的原因,我倾向于专门重新排序我的列,尽管使用OrderedDict一直是一个很好理解的选项。

    列表

    从python创建DataFrame的另一个选择是将数据包含在列表结构中。
    第一种方法是使用pandas进行面向行的方法 from_records 。此方法类似于字典方法,但您需要显式调出列标签。

    sales = [('Jones LLC', 150, 200, 50),
             ('Alpha Co', 200, 210, 90),
             ('Blue Inc', 140, 215, 95)]
    labels = ['account', 'Jan', 'Feb', 'Mar']
    df = pd.DataFrame.from_records(sales, columns=labels)
    

    第二种方法是 from_items 面向列的,实际上看起来类似于 OrderedDict 上面的例子。

    sales = [('account', ['Jones LLC', 'Alpha Co', 'Blue Inc']),
             ('Jan', [150, 200, 50]),
             ('Feb', [200, 210, 90]),
             ('Mar', [140, 215, 95]),
             ]
    df = pd.DataFrame.from_items(sales)
    

    这两个示例都将生成以下DataFrame:

    各种选项的直观总结

    为了保持各种选项在我的脑海中清晰,我将这个简单的图形放在一起,以显示字典与列表选项以及行与列导向的方法。
    这是一个2X2的网格,所以我希望所有来询问的人都留下深刻的印象!

    为简单起见,我没有展示 OrderedDict 方法,因为这种 from_items 方法可能更像是一个现实世界的解决方案。
    如果这有点难以阅读,您也可以获得PDF版本。

    简单的例子

    对于一个简单的概念,这似乎有很多解释。
    但是,我经常使用这些方法来构建小型DataFrame,并将其与更复杂的分析结合起来。

    举一个例子,假设我们要保存我们的DataFrame并包含一个页脚,以便我们知道它何时被创建以及它是由谁创建的。
    如果我们填充DataFrame并将其写入Excel比我们尝试将单个单元格写入Excel更容易。

    拿我们现有的DataFrame:

    sales = [('account', ['Jones LLC', 'Alpha Co', 'Blue Inc']),
             ('Jan', [150, 200, 50]),
             ('Feb', [200, 210, 90]),
             ('Mar', [140, 215, 95]),
             ]
    df = pd.DataFrame.from_items(sales)
    

    现在构建一个页脚(以列为导向):

    from datetime import date
    
    create_date = "{:%m-%d-%Y}".format(date.today())
    created_by = "CM"
    footer = [('Created by', [created_by]), ('Created on', [create_date]), ('Version', [1.1])]
    df_footer = pd.DataFrame.from_items(footer)
    


    合并进入一个Excel中的一个sheet:

    writer = pd.ExcelWriter('simple-report.xlsx', engine='xlsxwriter')
    df.to_excel(writer, index=False)
    df_footer.to_excel(writer, startrow=6, index=False)
    writer.save()
    


    这里的秘诀是使用 startrow 在销售数据框架下面写入页脚DataFrame。还有一个相应的startcol,所以你可以控制成为你想要的列布局。
    这使得基本 to_excel 功能具有很大的灵活性。

    总结

    大多数Pandas用户很快就熟悉了电子表格,CSV和SQL数据的摄取。
    但是,有时您会在基本列表或字典中包含数据并希望填充DataFrame。
    Pandas提供了几种选择,但可能并不总是立即明确何时使用哪种选择。

    没有一种方法是“最好的”,它实际上取决于您的需求。
    我倾向于喜欢基于列表的方法,因为我通常关心排序,列表确保我保留顺序。
    最重要的是要知道这些选项是可用的,这样您就可以聪明地使用最简单的选项来满足您的特定情况。

    从表面上看,这些代码样例看似简单,但我发现使用这些方法生成快速的信息片非常常见,他们可以增加或澄清更复杂的分析。
    DataFrame中数据的好处在于它很容易转换为其他格式,如Excel,CSV, HTML,LaTeX等。
    这种灵活性对于临时报告生成非常方便。

  • 相关阅读:
    组件中的data为什么不是一个对象而是一个函数?
    v-if v-show 的区别 以及使用的场景
    前后端数据交互的方式有哪些?
    服务端渲染客户端渲染的区别
    按下www.baidu.com发生什么
    php-语言参考-类型3.2-未完待续
    php-安装与配置-未完待续2
    PHP-入门指引1
    php扩展开发-INI配置
    php扩展开发-全局变量
  • 原文地址:https://www.cnblogs.com/everfight/p/create_dataframe_from_different_type.html
Copyright © 2011-2022 走看看