Editted by MarkDown
寻找cost函数最小值:梯度下降与最小二乘法
参考:最小二乘法小结--刘建平
背景:
目标函数 = Σ(观测值-理论值)2
观测值就是我们的多组样本,理论值就是我们的假设拟合函数。目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。
最小二乘法的局限性和适用场景
从上面可以看出,最小二乘法适用简洁高效,比梯度下降这样的迭代法似乎方便很多。但是这里我们就聊聊最小二乘法的局限性。
首先,最小二乘法需要计算(mathbf{X}^mathbf{T}mathbf{X})的逆矩阵,有可能它的逆矩阵不存在,这样就没有办法直接用最小二乘法了,此时梯度下降法仍然可以使用。当然,我们可以通过对样本数据进行整理,去掉冗余特征。让(mathbf{X}^mathbf{T}mathbf{X})的行列式不为0,然后继续使用最小二乘法。
第二,当样本特征n非常的大的时候,计算(mathbf{X}^mathbf{T}mathbf{X})的逆矩阵是一个非常耗时的工作(nxn的矩阵求逆),甚至不可行。此时以梯度下降为代表的迭代法仍然可以使用。那这个n到底多大就不适合最小二乘法呢?如果你没有很多的分布式大数据计算资源,建议超过10000个特征就用迭代法吧。或者通过主成分分析降低特征的维度后再用最小二乘法。
第三,如果拟合函数不是线性的,这时无法使用最小二乘法,需要通过一些技巧转化为线性才能使用,此时梯度下降仍然可以用。
第四,讲一些特殊情况。当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,常用的优化方法都无法去拟合数据。当样本量m等于特征说n的时候,用方程组求解就可以了。当m大于n时,拟合方程是超定的,也就是我们常用与最小二乘法的场景了。