文章目录
- 问题
- 搭建图
- 集群规划:
- ZooKeeper 安装
- hadoop安装配置
- core-site.xml
- HDFS-site.xml
- mapred-site.xml
- yarn-site.xml
- 修改slave
- 配置免密码登陆
- 将配置好的hadoop拷贝到其他节点
- 启动zookeeper集群(分别在weekend05、weekend06、tcast07上启动zk)
- 启动journalnode(分别在在weekend05、weekend06、tcast07上执行)
- 2.8格式化ZKFC(在weekend01上执行即可)
- 启动HDFS(在weekend01上执行)
- 2.10启动YARN
- 验证HDFS HA
- 验证YARN:
- 测试集群工作状态的一些指令 :
- HDFS冗余数据块的自动删除
- hadoop datanode节点超时时间设置
- 复习
- Hadoop机架感知
- 参考
问题
Hadoop 1.0存在的问题:单点故障和内存受限
- NameNode单点故障:NameNode只有一个,一旦宕机了,则数据就会丢失,虽然有配置SecondaryNameNode,但是SecondardyNameNode合并元数据和日志文件需要时间的,所有还是会有部分数据会丢失(edits)
- NameNode压力大:单节点只有一个NameNode,所有的请求都访问一个NameNode
Hadoop 2.0解决方案:
- 单点故障:HA(通过主备NameNode解决,如果主NameNode发生故障,则切换到备NameNode上)
- 内存受限问题:F(HDFS Federation 联邦) NameService
水平扩展,支持多个NameNode,每一个NameNode分管一部分目录,并且所有 NameNode 共享 DateNode 存储资源
现在只讨论HA的实现:
HA:客户端只有和一个NameNode(主)进行通信,而元数据部分是如何和NameNode(备)进行共享的?(首先dataNode 的信息是共享的,主NameNode和备NameNode这部分信息是一致的,而元数据不一样,不是实时的)
-
想法一:主Namenode和备Namenode之间建立一个socket通信(阻塞型通信),这样两个NameNode和DataNode的元数据就是一致的了(同时会引发一个问题,IO网络通信的问题,如果之间网络一旦出现问题,则客户端会认为主Namenode出现了问题,因为整个流程是这样的,客户端发送一个请求给主NameNode,然后主Namenode再发送给备Namenode,而此时网络发生波动的话,请求就会一直阻塞在那里直到备NameNode返回成功的状态,所以客户端会认为是主Namenode有问题),所以这个想法不可行。
-
想法二:主NameNode和备NameNode之间建立一个非阻塞的通信(就是客户端发送请求给主Namenode,然后主NameNode再发送给备NameNode,不需要等待备NameNode的返回状态,这样的话如果备NameNode发生问题,就会导致两个NameNode之间元数据不一致)所以这个想法也不可行。
-
想法三:当客户端发送请求给主NameNode时,元数据写到一个共享的磁盘中(两个Namenode都可以访问),这样元数据就可以保持一致了。这种技术就叫做NFS技术。但是NFS运维成本太高,所以Hadoop本身开发了一种技术,==JNN(JournalNode)==还是集群部署的,(保证了NameNode的高可用性)
ZooKeeper:在HDFS-HA搭建的过程中起着分布式协调作用
ZooKeeperFailOverController : Hadoop 配置ZKFC来实现自动故障转移,这两个都是在namenode上的JVM进程,用来监测主NameNode是否发生宕机的,如果发送宕机则向ZooKeeper汇报,ZooKeeper将原先注册的锁事件进行删除,然后ZooKeeper在锁事件删除后会回调备用NameNode发送的锁请求,将自动将备用NameNode变成主Namenode,并且备Namenode的状态由standby变成了Active
-
ZooKeeper提供目录结构树机制,两个ZKFC进行资源抢夺,谁抢夺上了,谁就可以在ZooKeeper上建立一个节点目录,并且创建一把锁,与此同时将与自身关联的Namenode的状态置为Active活跃状态(主Namenode),另一个置为standBy(静态的也叫备NameNode)。
-
事件回调和监控,ZKFC一旦监测到主NameNode发生宕机,则主Namenode节点上的ZKFC会将ZooKeeper上创建的节点目录进行删除,此时ZooKeeper会回调之前备ZKFC在ZooKeeper上注册的事件,将备ZKFC从standBy变成Active的状态。
-
Session机制:如果ZKFC的进程挂了,那么tcp连接就会断开,tcp断开有个会话超时时间范围,一旦超过这个范围,ZooKeeper就会将主ZKFC之前注册的节点进行删除事件的操作,此时ZooKeeper就会回调备ZKFC注册的节点事件,将备ZKFC下的Namenode进行状态转换为Active,并且同时将主Namenode的状态变成standBy,这样的话就不会同时存在两个Active的NameNode。
ZKFC(ZooKeeper Failover Controller)和namenode是在同一个节点上。
搭建图
HDFS
非HA跟HA框架图
HA搭建框架图
前期准备就不详细说了 前面的学习都有
- 修改Linux主机名
- 修改IP
- 修改主机名和IP的映射关系
注意如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等)/etc/hosts里面要配置的是内网IP地址和主机名的映射关系 - 关闭防火墙
- ssh免登陆
- 安装JDK,配置环境变量等
集群规划:
主机名 | IP | 安装的软件 | 运行的进程 |
---|---|---|---|
weekend01 | 192.168.1.201 | jdk、hadoop | NameNode、DFSZKFailoverController(ZKFC) |
weekend02 | 192.168.1.202 | jdk、hadoop | NameNode、DFSZKFailoverController(ZKFC) |
weekend03 | 192.168.1.203 | jdk、hadoop | ResourceManager |
weekend04 | 192.168.1.204 | jdk、hadoop | ResourceManager |
weekend05 | 192.168.1.205 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMainr |
weekend06 | 192.168.1.206 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMainr |
weekend07 | 192.168.1.207 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMainr |
说明:
-
在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。
hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode(JN)同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode(底层也用到了 ZooKeeper)
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态
-
hadoop-2.2.0中依然存在一个问题,就是 ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由 ZooKeeper 进行协调
ZooKeeper 安装
1.安装配置zooekeeper集群(在weekend05上)
1.1解压
tar -zxvf zookeeper-3.4.5.tar.gz -C /weekend/
1.2修改配置
cd /weekend/zookeeper-3.4.5/conf/
cp zoo_sample.cfg zoo.cfg
vim zoo.cfg
修改:dataDir=/weekend/zookeeper-3.4.5/tmp
在最后添加:
server.1=weekend05:2888:3888
server.2=weekend06:2888:3888
server.3=weekend07:2888:3888
保存退出
然后创建一个tmp文件夹
mkdir /weekend/zookeeper-3.4.5/tmp
再创建一个空文件
touch /weekend/zookeeper-3.4.5/tmp/myid
最后向该文件写入ID
echo 1 > /weekend/zookeeper-3.4.5/tmp/myid
1.3将配置好的zookeeper拷贝到其他节点(首先分别在weekend06、weekend07根目录下创建一个weekend目录:mkdir /weekend)
scp -r /weekend/zookeeper-3.4.5/ weekend06:/weekend/
scp -r /weekend/zookeeper-3.4.5/ weekend07:/weekend/
注意:修改weekend06、weekend07对应/weekend/zookeeper-3.4.5/tmp/myid内容
weekend06:
echo 2 > /weekend/zookeeper-3.4.5/tmp/myid
weekend07:
echo 3 > /weekend/zookeeper-3.4.5/tmp/myid
hadoop安装配置
2.安装配置hadoop集群(在weekend01上操作)
2.1解压
tar -zxvf hadoop-2.4.1.tar.gz -C /weekend/
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
#将hadoop添加到环境变量中
vim /etc/profile
export JAVA_HOME=/usr/java/jdk1.7.0_55
export HADOOP_HOME=/weekend/hadoop-2.4.1
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下
cd /home/hadoop/app/hadoop-2.4.1/etc/hadoop
2.2.1修改hadoo-env.sh
export JAVA_HOME=/home/hadoop/app/jdk1.7.0_55
core-site.xml
2.2.2修改core-site.xml
<configuration>
<!-- 指定hdfs的 nameservice 为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/app/hadoop-2.4.1/tmp</value>
</property>
<!-- 故障转移需要的 zookeeper 集群设置一下-->
<property>
<name>ha.zookeeper.quorum</name>
<value>weekend05:2181,weekend06:2181,weekend07:2181</value>
</property>
</configuration>
HDFS-site.xml
<configuration>
<!--指定hdfs的 nameservice 为 ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>weekend01:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>weekend01:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>weekend02:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>weekend02:50070</value>
</property>
<!-- 指定 NameNode 的元数据在 JournalNode 上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://weekend05:8485;weekend06:8485;weekend07:8485/ns1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/app/hadoop-2.4.1/journaldata</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
yarn-site.xml
<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>weekend03</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>weekend04</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>weekend05:2181,weekend06:2181,weekend07:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
修改slave
2.2.6修改slaves(slaves是指定子节点的位置,因为要在weekend01上启动HDFS、在weekend03启动yarn,
所以weekend01上的slaves文件指定的是datanode的位置,weekend03上的slaves文件指定的是nodemanager的位置)
weekend05
weekend06
weekend07
配置免密码登陆
#首先要配置weekend01到weekend02、weekend03、weekend04、weekend05、weekend06、weekend07的免密码登陆
#在weekend01上生产一对钥匙
ssh-keygen -t rsa
#将公钥拷贝到其他节点,包括自己
ssh-coyp-id weekend01
ssh-coyp-id weekend02
ssh-coyp-id weekend03
ssh-coyp-id weekend04
ssh-coyp-id weekend05
ssh-coyp-id weekend06
ssh-coyp-id weekend07
#配置weekend03到weekend04、weekend05、weekend06、weekend07的免密码登陆
#在weekend03上生产一对钥匙
ssh-keygen -t rsa
#将公钥拷贝到其他节点
ssh-coyp-id weekend04
ssh-coyp-id weekend05
ssh-coyp-id weekend06
ssh-coyp-id weekend07
#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置weekend02到weekend01的免登陆
在weekend02上生产一对钥匙
ssh-keygen -t rsa
ssh-coyp-id -i weekend01
将配置好的hadoop拷贝到其他节点
scp -r /weekend/ weekend02:/
scp -r /weekend/ weekend03:/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend04:/weekend/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend05:/weekend/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend06:/weekend/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend07:/weekend/
启动zookeeper集群(分别在weekend05、weekend06、tcast07上启动zk)
cd /weekend/zookeeper-3.4.5/bin/
./zkServer.sh start
#查看状态:一个leader,两个follower
./zkServer.sh status
启动journalnode(分别在在weekend05、weekend06、tcast07上执行)
cd /weekend/hadoop-2.4.1
sbin/hadoop-daemon.sh start journalnode
#运行jps命令检验,weekend05、weekend06、weekend07上多了 JournalNode 进程
格式化HDFS
#在weekend01上执行命令:
hdfs namenode -format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/weekend/hadoop-2.4.1/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到weekend02的/weekend/hadoop-2.4.1/下。
scp -r tmp/ weekend02:/home/hadoop/app/hadoop-2.4.1/
##也可以这样,建议hdfs namenode -bootstrapStandby
2.8格式化ZKFC(在weekend01上执行即可)
hdfs zkfc -formatZK
启动HDFS(在weekend01上执行)
sbin/start-dfs.sh
2.10启动YARN
(注意:是在weekend03上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh
到此,hadoop-2.4.1配置完毕,可以统计浏览器访问:
http://192.168.1.201:50070
NameNode 'weekend01:9000' (active)
http://192.168.1.202:50070
NameNode 'weekend02:9000' (standby)
验证HDFS HA
首先向hdfs上传一个文件
hadoop fs -put /etc/profile /profile
hadoop fs -ls /
然后再kill掉 active的 NameNode
kill -9 <pid of NN>
通过浏览器访问:http://192.168.1.202:50070
NameNode 'weekend02:9000' (active)
这个时候weekend02上的NameNode变成了active
在执行命令:
hadoop fs -ls /
-rw-r--r-- 3 root supergroup 1926 2014-02-06 15:36 /profile
刚才上传的文件依然存在!!!
手动启动那个挂掉的NameNode
sbin/hadoop-daemon.sh start namenode
通过浏览器访问:http://192.168.1.201:50070
NameNode 'weekend01:9000' (standby)
验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out
OK,大功告成!!!
测试集群工作状态的一些指令 :
bin/hdfs dfsadmin -report 查看hdfs的各节点状态信息
bin/hdfs haadmin -getServiceState nn1 获取一个namenode节点的HA状态
sbin/hadoop-daemon.sh start namenode 单独启动一个namenode进程
./hadoop-daemon.sh start zkfc 单独启动一个zkfc进程
HDFS冗余数据块的自动删除
在日常维护hadoop集群的过程中发现这样一种情况:
某个节点由于网络故障或者DataNode进程死亡,被NameNode判定为死亡,
HDFS马上自动开始数据块的容错拷贝;
当该节点重新添加到集群中时,由于该节点上的数据其实并没有损坏,
所以造成了HDFS上某些block的备份数超过了设定的备份数。
通过观察发现,这些多余的数据块经过很长的一段时间才会被完全删除掉,
那么这个时间取决于什么呢?
该时间的长短跟数据块报告的间隔时间有关。
Datanode会定期将当前该结点上所有的BLOCK信息报告给Namenode,
参数dfs.blockreport.intervalMsec就是控制这个报告间隔的参数。
hdfs-site.xml文件中有一个参数:
dfs.blockreport.intervalMsec
10000
Determines block reporting interval in milliseconds.
其中3600000为默认设置,3600000毫秒,即1个小时,也就是说,块报告的时间间隔为1个小时,所以经过了很长时间这些多余的块才被删除掉。通过实际测试发现,当把该参数调整的稍小一点的时候(60秒),多余的数据块确实很快就被删除了。
hadoop datanode节点超时时间设置
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。
HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的
heartbeat.recheck.interval的单位为毫秒,
dfs.heartbeat.interval的单位为秒。
所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。
hdfs-site.xml中的参数设置格式:
<property>
<name>heartbeat.recheck.interval</name>
<value>2000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>1</value>
</property>
复习
Hadoop机架感知
1.背景
Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份,同机架内其它某一节点上一份,不同机架的某一节点上一份。这样如果本地数据损坏,节点可以从同一机架内的相邻节点拿到数据,速度肯定比从跨机架节点上拿数据要快;同时,如果整个机架的网络出现异常,也能保证在其它机架的节点上找到数据。为了降低整体的带宽消耗和读取延时,HDFS会尽量让读取程序读取离它最近的副本。如果在读取程序的同一个机架上有一个副本,那么就读取该副本。如果一个HDFS集群跨越多个数据中心,那么客户端也将首先读本地数据中心的副本。那么Hadoop是如何确定任意两个节点是位于同一机架,还是跨机架的呢?答案就是机架感知。
默认情况下,hadoop的机架感知是没有被启用的。所以,在通常情况下,hadoop集群的HDFS在选机器的时候,是随机选择的,也就是说,很有可能在写数据时,hadoop将第一块数据block1写到了rack1上,然后随机的选择下将block2写入到了rack2下,此时两个rack之间产生了数据传输的流量,再接下来,在随机的情况下,又将block3重新又写回了rack1,此时,两个rack之间又产生了一次数据流量。在job处理的数据量非常的大,或者往hadoop推送的数据量非常大的时候,这种情况会造成rack之间的网络流量成倍的上升,成为性能的瓶颈,进而影响作业的性能以至于整个集群的服务
2. 配置
默认情况下,namenode启动时候日志是这样的:
2013-09-22 17:27:26,423 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /default-rack/ 192.168.147.92:50010
每个IP 对应的机架ID都是 /default-rack ,说明hadoop的机架感知没有被启用。
要将hadoop机架感知的功能启用,配置非常简单,在 NameNode所在节点的/home/bigdata/apps/hadoop/etc/hadoop的core-site.xml配置文件中配置一个选项:
<property>
<name>topology.script.file.name</name>
<value>/home/bigdata/apps/hadoop/etc/hadoop/topology.sh</value>
</property>
这个配置选项的value指定为一个可执行程序,通常为一个脚本,该脚本接受一个参数,输出一个值。接受的参数通常为某台datanode机器的ip地址,而输出的值通常为该ip地址对应的datanode所在的rack,例如”/rack1”。Namenode启动时,会判断该配置选项是否为空,如果非空,则表示已经启用机架感知的配置,此时namenode会根据配置寻找该脚本,并在接收到每一个datanode的heartbeat时,将该datanode的ip地址作为参数传给该脚本运行,并将得到的输出作为该datanode所属的机架ID,保存到内存的一个map中.
至于脚本的编写,就需要将真实的网络拓朴和机架信息了解清楚后,通过该脚本能够将机器的ip地址和机器名正确的映射到相应的机架上去。一个简单的实现如下:
#!/bin/bash
HADOOP_CONF=/home/bigdata/apps/hadoop/etc/hadoop
while [ $# -gt 0 ] ; do
nodeArg=$1
exec<${HADOOP_CONF}/topology.data
result=""
while read line ; do
ar=( $line )
if [ "${ar[0]}" = "$nodeArg" ]||[ "${ar[1]}" = "$nodeArg" ]; then
result="${ar[2]}"
fi
done
shift
if [ -z "$result" ] ; then
echo -n "/default-rack"
else
echo -n "$result"
fi
done
topology.data,格式为:节点(ip或主机名) /交换机xx/机架xx
192.168.147.91 tbe192168147091 /dc1/rack1
192.168.147.92 tbe192168147092 /dc1/rack1
192.168.147.93 tbe192168147093 /dc1/rack2
192.168.147.94 tbe192168147094 /dc1/rack3
192.168.147.95 tbe192168147095 /dc1/rack3
192.168.147.96 tbe192168147096 /dc1/rack3
需要注意的是,在Namenode上,该文件中的节点必须使用IP,使用主机名无效,而Jobtracker上,该文件中的节点必须使用主机名,使用IP无效,所以,最好ip和主机名都配上。
这样配置后,namenode启动时候日志是这样的:
2013-09-23 17:16:27,272 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /dc1/rack3/ 192.168.147.94:50010
说明hadoop的机架感知已经被启用了。
查看HADOOP机架信息命令:
./hadoop dfsadmin -printTopology
Rack: /dc1/rack1
192.168.147.91:50010 (tbe192168147091)
192.168.147.92:50010 (tbe192168147092)
Rack: /dc1/rack2
192.168.147.93:50010 (tbe192168147093)
Rack: /dc1/rack3
192.168.147.94:50010 (tbe192168147094)
192.168.147.95:50010 (tbe192168147095)
192.168.147.96:50010 (tbe192168147096)
3.增加数据节点,不重启NameNode
假设Hadoop集群在192.168.147.68上部署了NameNode和DataNode,启用了机架感知,执行bin/hadoop dfsadmin -printTopology看到的结果:
Rack: /dc1/rack1
192.168.147.68:50010 (dbj68)
现在想增加一个物理位置在rack2的数据节点192.168.147.69到集群中,不重启NameNode。
首先,修改NameNode节点的topology.data的配置,加入:192.168.147.69 dbj69 /dc1/rack2,保存。
192.168.147.68 dbj68 /dc1/rack1
192.168.147.69 dbj69 /dc1/rack2
然后,sbin/hadoop-daemons.sh start datanode启动数据节点dbj69,任意节点执行bin/hadoop dfsadmin -printTopology 看到的结果:
Rack: /dc1/rack1
192.168.147.68:50010 (dbj68)
Rack: /dc1/rack2
192.168.147.69:50010 (dbj69)
说明hadoop已经感知到了新加入的节点dbj69。
注意:如果不将dbj69的配置加入到topology.data中,执行sbin/hadoop-daemons.sh start datanode启动数据节点dbj69,datanode日志中会有异常发生,导致dbj69启动不成功。
2013-11-21 10:51:33,502 FATAL org.apache.hadoop.hdfs.server.datanode.DataNode: Initialization failed for block pool Block pool BP-1732631201-192.168.147.68-1385000665316 (storage id DS-878525145-192.168.147.69-50010-1385002292231) service to dbj68/192.168.147.68:9000
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.net.NetworkTopology$InvalidTopologyException): Invalid network topology. You cannot have a rack and a non-rack node at the same level of the network topology.
at org.apache.hadoop.net.NetworkTopology.add(NetworkTopology.java:382)
at org.apache.hadoop.hdfs.server.blockmanagement.DatanodeManager.registerDatanode(DatanodeManager.java:746)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.registerDatanode(FSNamesystem.java:3498)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.registerDatanode(NameNodeRpcServer.java:876)
at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolServerSideTranslatorPB.registerDatanode(DatanodeProtocolServerSideTranslatorPB.java:91)
at org.apache.hadoop.hdfs.protocol.proto.DatanodeProtocolProtos$DatanodeProtocolService$2.callBlockingMethod(DatanodeProtocolProtos.java:20018)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:453)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1002)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1701)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1697)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1695)
at org.apache.hadoop.ipc.Client.call(Client.java:1231)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:202)
at $Proxy10.registerDatanode(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:601)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:164)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:83)
at $Proxy10.registerDatanode(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolClientSideTranslatorPB.registerDatanode(DatanodeProtocolClientSideTranslatorPB.java:149)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.register(BPServiceActor.java:619)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.connectToNNAndHandshake(BPServiceActor.java:221)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.run(BPServiceActor.java:660)
at java.lang.Thread.run(Thread.java:722)
4.节点间距离计算
有了机架感知,NameNode就可以画出下图所示的datanode网络拓扑图。D1,R1都是交换机,最底层是datanode。则H1的rackid=/D1/R1/H1,H1的parent是R1,R1的是D1。这些rackid信息可以通过topology.script.file.name配置。有了这些rackid信息就可以计算出任意两台datanode之间的距离,得到最优的存放策略,优化整个集群的网络带宽均衡以及数据最优分配。
distance(/D1/R1/H1,/D1/R1/H1)=0 相同的datanode
distance(/D1/R1/H1,/D1/R1/H2)=2 同一rack下的不同datanode
distance(/D1/R1/H1,/D1/R2/H4)=4 同一IDC下的不同datanode
distance(/D1/R1/H1,/D2/R3/H7)=6 不同IDC下的datanode