zoukankan      html  css  js  c++  java
  • 回归和分类的区别

    分类模型和回归模型本质一样,分类模型是将回归模型的输出离散化。

    举几个例子:

    1. Logistic Regression 和 Linear Regression:

    • Linear Regression: 输出一个标量 wx+b,这个值是连续值,所以可以用来处理回归问题。
    • Logistic Regression:把上面的 wx+b 通过 sigmoid函数映射到(0,1)上,并划分一个阈值,大于阈值的分为一类,小于等于分为另一类,可以用来处理二分类问题。
    • 更进一步:对于N分类问题,则是先得到N组w值不同的 wx+b,然后归一化,比如用 softmax函数,最后变成N个类上的概率,可以处理多分类问题。

    2. Support Vector Regression 和 Support Vector Machine:

    • SVR:输出 wx+b,即某个样本点到分类面的距离,是连续值,所以是回归模型。

    • SVM:把这个距离用 sign(·) 函数作用,距离为正(在超平面一侧)的样本点是一类,为负的是另一类,所以是分类模型。

    3. 神经网络用于 分类 和 回归:

    • 用于回归:最后一层有m个神经元,每个神经元输出一个标量,m个神经元的输出可以看做向量 v,现全部连到一个神经元上,则这个神经元输出wv+b,是一个连续值,可以处理回归问题,跟上面 Linear Regression 思想一样。

    • 用于N分类:现在这m个神经元最后连接到 N 个神经元,就有 N 组w值不同的 wv+b,同理可以归一化(比如用 softmax )变成
      N个类上的概率。

    拓展: 上面的例子其实都是从 prediction 的角度举例的,如果从training角度来看,分类模型和回归模型的目标函数不同,分类常见的是 log loss, hinge loss, 而回归是 square loss。

    1.回归问题的应用场景

    回归问题通常是用来预测一个值,如预测房价、未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析。一个比较常见的回归算法是线性回归算法(LR)。另外,回归分析用在神经网络上,其最上层是不需要加上softmax函数的,而是直接对前一层累加即可。回归是对真实值的一种逼近预测。

    2.分类问题的应用场景

    分类问题是用于将事物打上一个标签,通常结果为离散值。例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别。分类并没有逼近的概念,最终正确结果只有一个,错误的就是错误的,不会有相近的概念。最常见的分类方法是逻辑回归,或者叫逻辑分类。

    3.如何选择模型

    下面一幅图可以告诉实际应用中我们如何选择合适的模型。
    这里写图片描述

  • 相关阅读:
    新概念第二册(1)--英语口语听力课1
    外企面试课程(一)---熟悉常见的缩略词
    公司 邮件 翻译 培训 长难句 结课
    workflow
    公司 邮件 翻译 培训 长难句 20
    公司 邮件 翻译 培训 长难句 19
    Engineering Management
    公司 邮件 翻译 培训 长难句 18
    公司 邮件 翻译 培训 长难句 17
    第14.5节 利用浏览器获取的http信息构造Python网页访问的http请求头
  • 原文地址:https://www.cnblogs.com/soyo/p/7787743.html
Copyright © 2011-2022 走看看