zoukankan      html  css  js  c++  java
  • NOIP前夕:noi.openjudge,Gopher II

    Gopher II
    总Time Limit:2000msMemory Limit:65536kB
    Description
    The gopher family, having averted the canine threat, must face a new predator. 

    The are n gophers and m gopher holes, each at distinct (x, y) coordinates. A hawk arrives and if a gopher does not reach a hole in s seconds it is vulnerable to being eaten. A hole can save at most one gopher. All the gophers run at the same velocity v. The gopher family needs an escape strategy that minimizes the number of vulnerable gophers.
    Input
    The input contains several cases. The first line of each case contains four positive integers less than 100: n, m, s, and v. The next n lines give the coordinates of the gophers; the following m lines give the coordinates of the gopher holes. All distances are in metres; all times are in seconds; all velocities are in metres per second.
    Output
    Output consists of a single line for each case, giving the number of vulnerable gophers.
    Sample Input
    2 2 5 10
    1.0 1.0
    2.0 2.0
    100.0 100.0
    20.0 20.0
    Sample Output
    1

    一道二分图的题
    知道考试之前不能学新算法了,可是看见了自己不会的,还是忍不住学了一晚上
    二分图最大匹配的匈牙利算法。
    不断求增广路,每次求出就能使答案+1
    题中只要 sqrt(sqr(mouse[i].x-hole[j].x)+sqr(mouse[i].y-hole[j].y))<=v*s
    就在老鼠的集合中i的元素和洞的集合中的j的元素连一条边
    CODE:
    var n,m,s,v:longint;
        i,j,k:longint;
        pole:array[1..500]of record
                             x,y:real;
                             end;
        mouse:array[1..500]of record
                              x,y:real;
                              end;
        edge:array[1..200,1..200]of boolean;
        match:array[1..500]of longint;
        used:array[1..500]of boolean;
        ans:longint;
    
    function dfs(x:longint):boolean;
             var i,j,k:longint;
             begin for i:=1 to m do
                       if (edge[x,i])and(used[i])
                          then begin used[i]:=false;
                                     if match[i]=0
                                        then begin match[i]:=x;
                                                   exit(true);
                                             end
                                        else begin if dfs(match[i])
                                                      then begin match[i]:=x;
                                                                 exit(true);
                                                           end;
                                             end;
                               end;
                   exit(false);
             end;
    
    begin
          while not eof do
          begin
    
          fillchar(mouse,sizeof(mouse),0);
          fillchar(pole,sizeof(pole),0);
          readln(n,m,s,v);
          for i:=1 to n do
              readln(mouse[i].x,mouse[i].y);
          for i:=1 to m do
              readln(pole[i].x,pole[i].y);
          fillchar(edge,sizeof(edge),false);
          for i:=1 to n do
              for j:=1 to m do
                  if sqrt(sqr(mouse[i].x-pole[j].x)+sqr(mouse[i].y-pole[j].y))<=s*v
                     then edge[i,j]:=true;
          fillchar(match,sizeof(match),0);
          ans:=0;
          for i:=1 to n do
              begin fillchar(used,sizeof(used),true);
                    if dfs(i)
                       then inc(ans);
              end;
          writeln(n-ans);
    
          end;
    end.
  • 相关阅读:
    luogu P2852 [USACO06DEC]Milk Patterns G
    FZOJ 4267 树上统计
    CF1303G Sum of Prefix Sums
    luogu P5311 [Ynoi2011]成都七中
    luogu P5306 [COCI2019] Transport
    SP34096 DIVCNTK
    luogu P5325 【模板】Min_25筛
    luogu P1742 最小圆覆盖
    求两直线交点坐标
    1098: 复合函数求值(函数专题)
  • 原文地址:https://www.cnblogs.com/spiderKK/p/4928404.html
Copyright © 2011-2022 走看看