zoukankan      html  css  js  c++  java
  • USACO 3.1.3 HUMBLE NUMBERS

    Humble Numbers

    For a given set of K prime numbers S = {p1, p2, ..., pK}, consider the set of all numbers whose prime factors are a subset of S. This set contains, for example, p1, p1p2, p1p1, and p1p2p3(among others). This is the set of `humble numbers' for the input set S. Note: The number 1 is explicitly declared not to be a humble number.

    Your job is to find the Nth humble number for a given set S. Long integers (signed 32-bit) will be adequate for all solutions.

    PROGRAM NAME: humble

    INPUT FORMAT

    Line 1: Two space separated integers: K and N, 1 <= K <=100 and 1 <= N <= 100,000.
    Line 2: K space separated positive integers that comprise the set S.

    SAMPLE INPUT (file humble.in)

    4 19
    2 3 5 7
    

    OUTPUT FORMAT

    The Nth humble number from set S printed alone on a line.

    SAMPLE OUTPUT (file humble.out)

    27
    

    这道题我进行了2个优化,其实有一个是抄别人的。。。因为第一个优化在第六个点光荣的TLE了
    第一个优化:对于所要求的S数组的每一个值设立一个值now,记录下一个在质数数组中要乘以的值


    第二个优化:我对于这个真的无语了。。
    为什么我不能用质数数组来弄呢。。。对于质数数组设立一个now,记录下一个在s数组中要乘以的值。这下秒杀这道题了

    有大牛说可以用优先队列,但我觉得不行,因为从第一个扩展的所有点不见得都是最小的

       Test 1: TEST OK [0.000 secs, 3600 KB]
      
    Test 2: TEST OK [0.000 secs, 3600 KB]
      
    Test 3: TEST OK [0.000 secs, 3600 KB]
      
    Test 4: TEST OK [0.011 secs, 3600 KB]

       Test 5: TEST OK [0.011 secs, 3600 KB]

       Test 6: TEST OK [0.043 secs, 3600 KB]

       Test 7: TEST OK [0.011 secs, 3600 KB]

       Test 8: TEST OK [0.011 secs, 3600 KB]

       Test 9: TEST OK [0.000 secs, 3600 KB]

       Test 10: TEST OK [0.011 secs, 3600 KB]

       Test 11: TEST OK [0.000 secs, 3600 KB]

       Test 12: TEST OK [0.086 secs, 3600 KB]
    View Code
    /*
    ID:kaisada2
    PROG:humble
    LANG:C++
    */
    #include<iostream>
    #include<string.h>
    #include<algorithm>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<queue>
    
    using namespace std;
    
    int k,n;
    struct crf{
           int x;
           int index;
    }a[101];
    
    int s[100001];
    
    int find(int x)
    {
       int min1=2147483647;
       for(int i=1;i<=k;i++)
       {
          if(a[i].x*s[a[i].index]<min1)
          {
             min1=a[i].x*s[a[i].index];
          }
       } 
       for(int i=1;i<=k;i++)
       {
          if(a[i].x*s[a[i].index]==min1)
          {
             a[i].index++;
          }
       }
       return min1;
    }
    
    
    int main( )
    {
        freopen("humble.in","r",stdin);
        freopen("humble.out","w",stdout);
        cin>>k>>n;
        for(int i=1;i<=k;i++)
        {
           cin>>a[i].x;
           a[i].index=0;
        }
        s[0]=1;
        for(int i=1;i<=n;i++)
        {
           s[i]=find(i);
        }
        cout<<s[n]<<endl;
        return 0;
    }
  • 相关阅读:
    Openjudge NOI题库 ch0111/01 查找最近的元素
    Openjudge NOI题库 ch0111/07 和为给定数
    Openjudge NOI题库 ch0111/08 不重复地输出数
    Openjudge NOI题库 ch0111/10 河中跳房子|NOIP2015 day2 stone
    Openjudge NOI题库 ch0111/t1776 木材加工
    SRM 508(2-1000pt)
    SRM 507(2-1000pt)
    SRM 504.5(2-1000pt)
    最小生成树专题总结
    SRM 506(2-1000pt)
  • 原文地址:https://www.cnblogs.com/spwkx/p/2622567.html
Copyright © 2011-2022 走看看