zoukankan      html  css  js  c++  java
  • 学习DCGAN网络的时候遇到的错误代码

    在用keras学习DCGAN网络的时候遇到如下的错误代码:

    tensorflow.python.framework.errors_impl.FailedPreconditionError:  Error while reading resource variable _AnonymousVar33 from Container: localhost. This could mean that the variable was uninitialized. Not found: Resource localhost/_AnonymousVar33/N10tensorflow3VarE does not exist.
         [[node mul_1/ReadVariableOp (defined at /Users/xxx/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py:1751) ]] [Op:__inference_keras_scratch_graph_2262]
    Function call stack:
    keras_scratch_graph
     

     这是因为作者的代码是用tensorflow 1.x的版本写的,而我们本地的环境是tensorflow2.0及以上,出现了不兼容问题,可以解决的一种方法是在头部添加以下代码:

    1.  
      import tensorflow.compat.v1 as tf #使用1.0版本的方法
    2.  
      tf.disable_v2_behavior() #禁用2.0版本的方法

    通过对tensorflow2.0降级的方式来运行代码。

    当然也可以通过对旧代码更改,调用tf.Session.run()方法的方式来使旧代码适配新的tensorflow版本,相关资料较多此处不做详细介绍。

    ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    问题描述

    在学习DCGAN时,遇到如下警告: 

    keras UserWarning: Discrepancy between trainable weights and collected trainable weigh...

    在这里插入图片描述

    报错位置:[line 138] d_loss_real = self.discriminator.train_on_batch(imgs, valid)

    问题的官网描述:在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。

    解决方法

    构造一个新的frozen_D 替代 combined 中的 discriminator 。
    参考keras DCGAN中的代码。

    代码基于 eriklindernoren/Keras-GAN ,并修改了trainable与compile 易于混淆的代码。

    from keras.datasets import mnist
    from keras.layers import Input, Dense, Reshape, Flatten, Dropout
    from keras.layers import BatchNormalization, Activation, ZeroPadding2D
    from keras.layers.advanced_activations import LeakyReLU
    from keras.layers.convolutional import UpSampling2D, Conv2D
    from keras.models import Sequential, Model
    from keras.optimizers import Adam
    import matplotlib.pyplot as plt
    import numpy as np
    
    
    class DCGAN():
        def __init__(self):
            # Input shape
            self.img_rows = 28
            self.img_cols = 28
            self.channels = 1
            self.img_shape = (self.img_rows, self.img_cols, self.channels)
            self.latent_dim = 100
    
            optimizer = Adam(0.0002, 0.5)
    
            base_generator = self.build_generator()
            base_discriminator = self.build_discriminator()
            ########
            self.generator = Model(
                inputs=base_generator.inputs,
                outputs=base_generator.outputs)
    
            self.discriminator = Model(
                inputs=base_discriminator.inputs,
                outputs=base_discriminator.outputs)
            self.discriminator.compile(loss='binary_crossentropy',
                                       optimizer=optimizer,
                                       metrics=['accuracy'])
    
            frozen_D = Model(
                inputs=base_discriminator.inputs,
                outputs=base_discriminator.outputs)
            frozen_D.trainable = False
            z = Input(shape=(self.latent_dim,))
            img = self.generator(z)
            valid = frozen_D(img)
            self.combined = Model(z, valid)
            self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
    
        def build_generator(self):
    
            model = Sequential()
    
            model.add(
                Dense(
                    128 * 7 * 7,
                    activation="relu",
                    input_dim=self.latent_dim))
            model.add(Reshape((7, 7, 128)))
            model.add(UpSampling2D())
            model.add(Conv2D(128, kernel_size=3, padding="same"))
            model.add(BatchNormalization(momentum=0.8))
            model.add(Activation("relu"))
            model.add(UpSampling2D())
            model.add(Conv2D(64, kernel_size=3, padding="same"))
            model.add(BatchNormalization(momentum=0.8))
            model.add(Activation("relu"))
            model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
            model.add(Activation("tanh"))
    
            model.summary()
    
            return model
    
        def build_discriminator(self):
    
            model = Sequential()
    
            model.add(
                Conv2D(
                    32,
                    kernel_size=3,
                    strides=2,
                    input_shape=self.img_shape,
                    padding="same"))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dropout(0.25))
            model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
            model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
            model.add(BatchNormalization(momentum=0.8))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dropout(0.25))
            model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
            model.add(BatchNormalization(momentum=0.8))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dropout(0.25))
            model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
            model.add(BatchNormalization(momentum=0.8))
            model.add(LeakyReLU(alpha=0.2))
            model.add(Dropout(0.25))
            model.add(Flatten())
            model.add(Dense(1, activation='sigmoid'))
    
            model.summary()
    
            return model
    
        def train(self, epochs, batch_size, save_interval, log_interval):
    
            # Load the dataset
            (X_train, _), (_, _) = mnist.load_data()
    
            # Rescale -1 to 1
            X_train = X_train / 127.5 - 1.
            X_train = np.expand_dims(X_train, axis=3)
    
            # Adversarial ground truths
            valid = np.ones((batch_size, 1))
            fake = np.zeros((batch_size, 1))
    
            logs = []
    
            for epoch in range(epochs):
    
                # ---------------------
                #  Train Discriminator
                # ---------------------
    
                # Select a random half of images
                idx = np.random.randint(0, X_train.shape[0], batch_size)
                imgs = X_train[idx]
    
                # Sample noise and generate a batch of new images
                noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
                gen_imgs = self.generator.predict(noise)
    
                # Train the discriminator (real classified as ones and generated as
                # zeros)
                d_loss_real = self.discriminator.train_on_batch(imgs, valid)
                d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
                d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
    
                # ---------------------
                #  Train Generator
                # ---------------------
    
                # Train the generator (wants discriminator to mistake images as
                # real)
                g_loss = self.combined.train_on_batch(noise, valid)
    
                if epoch % log_interval == 0:
                    logs.append([epoch, d_loss[0], d_loss[1], g_loss])
    
                if epoch % save_interval == 0:
                    print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %
                          (epoch, d_loss[0], 100 * d_loss[1], g_loss))
                    self.save_imgs(epoch)
            self.showlogs(logs)
    
        def showlogs(self, logs):
            logs = np.array(logs)
            names = ["d_loss", "d_acc", "g_loss"]
            for i in range(3):
                plt.subplot(2, 2, i + 1)
                plt.plot(logs[:, 0], logs[:, i + 1])
                plt.xlabel("epoch")
                plt.ylabel(names[i])
            plt.tight_layout()
            plt.show()
    
        def save_imgs(self, epoch):
            r, c = 5, 5
            noise = np.random.normal(0, 1, (r * c, self.latent_dim))
            gen_imgs = self.generator.predict(noise)
    
            # Rescale images 0 - 1
            gen_imgs = 0.5 * gen_imgs + 0.5
    
            fig, axs = plt.subplots(r, c)
            cnt = 0
            for i in range(r):
                for j in range(c):
                    axs[i, j].imshow(gen_imgs[cnt, :, :, 0], cmap='gray')
                    axs[i, j].axis('off')
                    cnt += 1
            fig.savefig("images/mnist_%d.png" % epoch)
            plt.close()
    
    
    if __name__ == '__main__':
        dcgan = DCGAN()
        dcgan.train(epochs=4000, batch_size=32, save_interval=50, log_interval=10)
    

      

     

  • 相关阅读:
    移动端轮播插件
    一个简单的富文本编辑器
    animation css3
    渐变的写法
    js拖拽功能
    打子弹游戏 js
    css-vertical-centering
    css3的linear-gradient
    js模拟滚动条
    js日历
  • 原文地址:https://www.cnblogs.com/sqm724/p/13906952.html
Copyright © 2011-2022 走看看