zoukankan      html  css  js  c++  java
  • 机器学习实战---K-近邻

    一:简单实现K-近邻算法

    (一)导入数据

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    
    def CreateDataSet():
        data = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
        labels = np.array(['A','A','B','B'])
        return data,labels
    
    data,labels = CreateDataSet()
    print(data)
    print(labels)

    plt.figure()
    plt.scatter(data[:,0],data[:,1],c="b")
    for i in range(data.shape[0]):
        plt.text(data[i,0]+0.02,data[i,1],labels[i])
    plt.show()

    (二)实现KNN算法

    def KNNClassfy(preData,dataSet,labels,k):
        distance = np.sum(np.power(dataSet - preData,2),1)  #注意:这里我们不进行开方,可以少算一次
        sortDistIdx = np.argsort(distance,0)  #小到大排序,获取索引
        labels_idx = {}
        for i in range(k):  #获取分类
            idx = sortDistIdx[i] #获取索引
            label = labels[idx] #获取标签
            labels_idx[label] = labels_idx.get(label,0)+1
        labels_sort = sorted(labels_idx.items(),key=lambda x:x[1],reverse=True)
        return labels_sort[0][0]  #获取最大可能分类

    (三)结果测试

    preData = np.array([0,0.3])
    preLab = KNNClassfy(preData,data,labels,3)
    print(preLab)

    二:使用KNN算法分析喜好---多维 

    (一)读取数据

    40920    8.326976    0.953952    3
    14488    7.153469    1.673904    2
    26052    1.441871    0.805124    1
    75136    13.147394    0.428964    1
    38344    1.669788    0.134296    1
    72993    10.141740    1.032955    1
    35948    6.830792    1.213192    3
    42666    13.276369    0.543880    3
    67497    8.631577    0.749278    1
    35483    12.273169    1.508053    3
    50242    3.723498    0.831917    1
    63275    8.385879    1.669485    1
    5569    4.875435    0.728658    2
    51052    4.680098    0.625224    1
    77372    15.299570    0.331351    1
    43673    1.889461    0.191283    1
    61364    7.516754    1.269164    1
    69673    14.239195    0.261333    1
    15669    0.000000    1.250185    2
    28488    10.528555    1.304844    3
    6487    3.540265    0.822483    2
    37708    2.991551    0.833920    1
    22620    5.297865    0.638306    2
    28782    6.593803    0.187108    3
    19739    2.816760    1.686209    2
    36788    12.458258    0.649617    3
    5741    0.000000    1.656418    2
    28567    9.968648    0.731232    3
    6808    1.364838    0.640103    2
    41611    0.230453    1.151996    1
    36661    11.865402    0.882810    3
    43605    0.120460    1.352013    1
    15360    8.545204    1.340429    3
    63796    5.856649    0.160006    1
    10743    9.665618    0.778626    2
    70808    9.778763    1.084103    1
    72011    4.932976    0.632026    1
    5914    2.216246    0.587095    2
    14851    14.305636    0.632317    3
    33553    12.591889    0.686581    3
    44952    3.424649    1.004504    1
    17934    0.000000    0.147573    2
    27738    8.533823    0.205324    3
    29290    9.829528    0.238620    3
    42330    11.492186    0.263499    3
    36429    3.570968    0.832254    1
    39623    1.771228    0.207612    1
    32404    3.513921    0.991854    1
    27268    4.398172    0.975024    1
    5477    4.276823    1.174874    2
    14254    5.946014    1.614244    2
    68613    13.798970    0.724375    1
    41539    10.393591    1.663724    3
    7917    3.007577    0.297302    2
    21331    1.031938    0.486174    2
    8338    4.751212    0.064693    2
    5176    3.692269    1.655113    2
    18983    10.448091    0.267652    3
    68837    10.585786    0.329557    1
    13438    1.604501    0.069064    2
    48849    3.679497    0.961466    1
    12285    3.795146    0.696694    2
    7826    2.531885    1.659173    2
    5565    9.733340    0.977746    2
    10346    6.093067    1.413798    2
    1823    7.712960    1.054927    2
    9744    11.470364    0.760461    3
    16857    2.886529    0.934416    2
    39336    10.054373    1.138351    3
    65230    9.972470    0.881876    1
    2463    2.335785    1.366145    2
    27353    11.375155    1.528626    3
    16191    0.000000    0.605619    2
    12258    4.126787    0.357501    2
    42377    6.319522    1.058602    1
    25607    8.680527    0.086955    3
    77450    14.856391    1.129823    1
    58732    2.454285    0.222380    1
    46426    7.292202    0.548607    3
    32688    8.745137    0.857348    3
    64890    8.579001    0.683048    1
    8554    2.507302    0.869177    2
    28861    11.415476    1.505466    3
    42050    4.838540    1.680892    1
    32193    10.339507    0.583646    3
    64895    6.573742    1.151433    1
    2355    6.539397    0.462065    2
    0    2.209159    0.723567    2
    70406    11.196378    0.836326    1
    57399    4.229595    0.128253    1
    41732    9.505944    0.005273    3
    11429    8.652725    1.348934    3
    75270    17.101108    0.490712    1
    5459    7.871839    0.717662    2
    73520    8.262131    1.361646    1
    40279    9.015635    1.658555    3
    21540    9.215351    0.806762    3
    17694    6.375007    0.033678    2
    22329    2.262014    1.022169    1
    46570    5.677110    0.709469    1
    42403    11.293017    0.207976    3
    33654    6.590043    1.353117    1
    9171    4.711960    0.194167    2
    28122    8.768099    1.108041    3
    34095    11.502519    0.545097    3
    1774    4.682812    0.578112    2
    40131    12.446578    0.300754    3
    13994    12.908384    1.657722    3
    77064    12.601108    0.974527    1
    11210    3.929456    0.025466    2
    6122    9.751503    1.182050    3
    15341    3.043767    0.888168    2
    44373    4.391522    0.807100    1
    28454    11.695276    0.679015    3
    63771    7.879742    0.154263    1
    9217    5.613163    0.933632    2
    69076    9.140172    0.851300    1
    24489    4.258644    0.206892    1
    16871    6.799831    1.221171    2
    39776    8.752758    0.484418    3
    5901    1.123033    1.180352    2
    40987    10.833248    1.585426    3
    7479    3.051618    0.026781    2
    38768    5.308409    0.030683    3
    4933    1.841792    0.028099    2
    32311    2.261978    1.605603    1
    26501    11.573696    1.061347    3
    37433    8.038764    1.083910    3
    23503    10.734007    0.103715    3
    68607    9.661909    0.350772    1
    27742    9.005850    0.548737    3
    11303    0.000000    0.539131    2
    0    5.757140    1.062373    2
    32729    9.164656    1.624565    3
    24619    1.318340    1.436243    1
    42414    14.075597    0.695934    3
    20210    10.107550    1.308398    3
    33225    7.960293    1.219760    3
    54483    6.317292    0.018209    1
    18475    12.664194    0.595653    3
    33926    2.906644    0.581657    1
    43865    2.388241    0.913938    1
    26547    6.024471    0.486215    3
    44404    7.226764    1.255329    3
    16674    4.183997    1.275290    2
    8123    11.850211    1.096981    3
    42747    11.661797    1.167935    3
    56054    3.574967    0.494666    1
    10933    0.000000    0.107475    2
    18121    7.937657    0.904799    3
    11272    3.365027    1.014085    2
    16297    0.000000    0.367491    2
    28168    13.860672    1.293270    3
    40963    10.306714    1.211594    3
    31685    7.228002    0.670670    3
    55164    4.508740    1.036192    1
    17595    0.366328    0.163652    2
    1862    3.299444    0.575152    2
    57087    0.573287    0.607915    1
    63082    9.183738    0.012280    1
    51213    7.842646    1.060636    3
    6487    4.750964    0.558240    2
    4805    11.438702    1.556334    3
    30302    8.243063    1.122768    3
    68680    7.949017    0.271865    1
    17591    7.875477    0.227085    2
    74391    9.569087    0.364856    1
    37217    7.750103    0.869094    3
    42814    0.000000    1.515293    1
    14738    3.396030    0.633977    2
    19896    11.916091    0.025294    3
    14673    0.460758    0.689586    2
    32011    13.087566    0.476002    3
    58736    4.589016    1.672600    1
    54744    8.397217    1.534103    1
    29482    5.562772    1.689388    1
    27698    10.905159    0.619091    3
    11443    1.311441    1.169887    2
    56117    10.647170    0.980141    3
    39514    0.000000    0.481918    1
    26627    8.503025    0.830861    3
    16525    0.436880    1.395314    2
    24368    6.127867    1.102179    1
    22160    12.112492    0.359680    3
    6030    1.264968    1.141582    2
    6468    6.067568    1.327047    2
    22945    8.010964    1.681648    3
    18520    3.791084    0.304072    2
    34914    11.773195    1.262621    3
    6121    8.339588    1.443357    2
    38063    2.563092    1.464013    1
    23410    5.954216    0.953782    1
    35073    9.288374    0.767318    3
    52914    3.976796    1.043109    1
    16801    8.585227    1.455708    3
    9533    1.271946    0.796506    2
    16721    0.000000    0.242778    2
    5832    0.000000    0.089749    2
    44591    11.521298    0.300860    3
    10143    1.139447    0.415373    2
    21609    5.699090    1.391892    2
    23817    2.449378    1.322560    1
    15640    0.000000    1.228380    2
    8847    3.168365    0.053993    2
    50939    10.428610    1.126257    3
    28521    2.943070    1.446816    1
    32901    10.441348    0.975283    3
    42850    12.478764    1.628726    3
    13499    5.856902    0.363883    2
    40345    2.476420    0.096075    1
    43547    1.826637    0.811457    1
    70758    4.324451    0.328235    1
    19780    1.376085    1.178359    2
    44484    5.342462    0.394527    1
    54462    11.835521    0.693301    3
    20085    12.423687    1.424264    3
    42291    12.161273    0.071131    3
    47550    8.148360    1.649194    3
    11938    1.531067    1.549756    2
    40699    3.200912    0.309679    1
    70908    8.862691    0.530506    1
    73989    6.370551    0.369350    1
    11872    2.468841    0.145060    2
    48463    11.054212    0.141508    3
    15987    2.037080    0.715243    2
    70036    13.364030    0.549972    1
    32967    10.249135    0.192735    3
    63249    10.464252    1.669767    1
    42795    9.424574    0.013725    3
    14459    4.458902    0.268444    2
    19973    0.000000    0.575976    2
    5494    9.686082    1.029808    3
    67902    13.649402    1.052618    1
    25621    13.181148    0.273014    3
    27545    3.877472    0.401600    1
    58656    1.413952    0.451380    1
    7327    4.248986    1.430249    2
    64555    8.779183    0.845947    1
    8998    4.156252    0.097109    2
    11752    5.580018    0.158401    2
    76319    15.040440    1.366898    1
    27665    12.793870    1.307323    3
    67417    3.254877    0.669546    1
    21808    10.725607    0.588588    3
    15326    8.256473    0.765891    2
    20057    8.033892    1.618562    3
    79341    10.702532    0.204792    1
    15636    5.062996    1.132555    2
    35602    10.772286    0.668721    3
    28544    1.892354    0.837028    1
    57663    1.019966    0.372320    1
    78727    15.546043    0.729742    1
    68255    11.638205    0.409125    1
    14964    3.427886    0.975616    2
    21835    11.246174    1.475586    3
    7487    0.000000    0.645045    2
    8700    0.000000    1.424017    2
    26226    8.242553    0.279069    3
    65899    8.700060    0.101807    1
    6543    0.812344    0.260334    2
    46556    2.448235    1.176829    1
    71038    13.230078    0.616147    1
    47657    0.236133    0.340840    1
    19600    11.155826    0.335131    3
    37422    11.029636    0.505769    3
    1363    2.901181    1.646633    2
    26535    3.924594    1.143120    1
    47707    2.524806    1.292848    1
    38055    3.527474    1.449158    1
    6286    3.384281    0.889268    2
    10747    0.000000    1.107592    2
    44883    11.898890    0.406441    3
    56823    3.529892    1.375844    1
    68086    11.442677    0.696919    1
    70242    10.308145    0.422722    1
    11409    8.540529    0.727373    2
    67671    7.156949    1.691682    1
    61238    0.720675    0.847574    1
    17774    0.229405    1.038603    2
    53376    3.399331    0.077501    1
    30930    6.157239    0.580133    1
    28987    1.239698    0.719989    1
    13655    6.036854    0.016548    2
    7227    5.258665    0.933722    2
    40409    12.393001    1.571281    3
    13605    9.627613    0.935842    2
    26400    11.130453    0.597610    3
    13491    8.842595    0.349768    3
    30232    10.690010    1.456595    3
    43253    5.714718    1.674780    3
    55536    3.052505    1.335804    1
    8807    0.000000    0.059025    2
    25783    9.945307    1.287952    3
    22812    2.719723    1.142148    1
    77826    11.154055    1.608486    1
    38172    2.687918    0.660836    1
    31676    10.037847    0.962245    3
    74038    12.404762    1.112080    1
    44738    10.237305    0.633422    3
    17410    4.745392    0.662520    2
    5688    4.639461    1.569431    2
    36642    3.149310    0.639669    1
    29956    13.406875    1.639194    3
    60350    6.068668    0.881241    1
    23758    9.477022    0.899002    3
    25780    3.897620    0.560201    2
    11342    5.463615    1.203677    2
    36109    3.369267    1.575043    1
    14292    5.234562    0.825954    2
    11160    0.000000    0.722170    2
    23762    12.979069    0.504068    3
    39567    5.376564    0.557476    1
    25647    13.527910    1.586732    3
    14814    2.196889    0.784587    2
    73590    10.691748    0.007509    1
    35187    1.659242    0.447066    1
    49459    8.369667    0.656697    3
    31657    13.157197    0.143248    3
    6259    8.199667    0.908508    2
    33101    4.441669    0.439381    3
    27107    9.846492    0.644523    3
    17824    0.019540    0.977949    2
    43536    8.253774    0.748700    3
    67705    6.038620    1.509646    1
    35283    6.091587    1.694641    3
    71308    8.986820    1.225165    1
    31054    11.508473    1.624296    3
    52387    8.807734    0.713922    3
    40328    0.000000    0.816676    1
    34844    8.889202    1.665414    3
    11607    3.178117    0.542752    2
    64306    7.013795    0.139909    1
    32721    9.605014    0.065254    3
    33170    1.230540    1.331674    1
    37192    10.412811    0.890803    3
    13089    0.000000    0.567161    2
    66491    9.699991    0.122011    1
    15941    0.000000    0.061191    2
    4272    4.455293    0.272135    2
    48812    3.020977    1.502803    1
    28818    8.099278    0.216317    3
    35394    1.157764    1.603217    1
    71791    10.105396    0.121067    1
    40668    11.230148    0.408603    3
    39580    9.070058    0.011379    3
    11786    0.566460    0.478837    2
    19251    0.000000    0.487300    2
    56594    8.956369    1.193484    3
    54495    1.523057    0.620528    1
    11844    2.749006    0.169855    2
    45465    9.235393    0.188350    3
    31033    10.555573    0.403927    3
    16633    6.956372    1.519308    2
    13887    0.636281    1.273984    2
    52603    3.574737    0.075163    1
    72000    9.032486    1.461809    1
    68497    5.958993    0.023012    1
    35135    2.435300    1.211744    1
    26397    10.539731    1.638248    3
    7313    7.646702    0.056513    2
    91273    20.919349    0.644571    1
    24743    1.424726    0.838447    1
    31690    6.748663    0.890223    3
    15432    2.289167    0.114881    2
    58394    5.548377    0.402238    1
    33962    6.057227    0.432666    1
    31442    10.828595    0.559955    3
    31044    11.318160    0.271094    3
    29938    13.265311    0.633903    3
    9875    0.000000    1.496715    2
    51542    6.517133    0.402519    3
    11878    4.934374    1.520028    2
    69241    10.151738    0.896433    1
    37776    2.425781    1.559467    1
    68997    9.778962    1.195498    1
    67416    12.219950    0.657677    1
    59225    7.394151    0.954434    1
    29138    8.518535    0.742546    3
    5962    2.798700    0.662632    2
    10847    0.637930    0.617373    2
    70527    10.750490    0.097415    1
    9610    0.625382    0.140969    2
    64734    10.027968    0.282787    1
    25941    9.817347    0.364197    3
    2763    0.646828    1.266069    2
    55601    3.347111    0.914294    1
    31128    11.816892    0.193798    3
    5181    0.000000    1.480198    2
    69982    10.945666    0.993219    1
    52440    10.244706    0.280539    3
    57350    2.579801    1.149172    1
    57869    2.630410    0.098869    1
    56557    11.746200    1.695517    3
    42342    8.104232    1.326277    3
    15560    12.409743    0.790295    3
    34826    12.167844    1.328086    3
    8569    3.198408    0.299287    2
    77623    16.055513    0.541052    1
    78184    7.138659    0.158481    1
    7036    4.831041    0.761419    2
    69616    10.082890    1.373611    1
    21546    10.066867    0.788470    3
    36715    8.129538    0.329913    3
    20522    3.012463    1.138108    2
    42349    3.720391    0.845974    1
    9037    0.773493    1.148256    2
    26728    10.962941    1.037324    3
    587    0.177621    0.162614    2
    48915    3.085853    0.967899    1
    9824    8.426781    0.202558    2
    4135    1.825927    1.128347    2
    9666    2.185155    1.010173    2
    59333    7.184595    1.261338    1
    36198    0.000000    0.116525    1
    34909    8.901752    1.033527    3
    47516    2.451497    1.358795    1
    55807    3.213631    0.432044    1
    14036    3.974739    0.723929    2
    42856    9.601306    0.619232    3
    64007    8.363897    0.445341    1
    59428    6.381484    1.365019    1
    13730    0.000000    1.403914    2
    41740    9.609836    1.438105    3
    63546    9.904741    0.985862    1
    30417    7.185807    1.489102    3
    69636    5.466703    1.216571    1
    64660    0.000000    0.915898    1
    14883    4.575443    0.535671    2
    7965    3.277076    1.010868    2
    68620    10.246623    1.239634    1
    8738    2.341735    1.060235    2
    7544    3.201046    0.498843    2
    6377    6.066013    0.120927    2
    36842    8.829379    0.895657    3
    81046    15.833048    1.568245    1
    67736    13.516711    1.220153    1
    32492    0.664284    1.116755    1
    39299    6.325139    0.605109    3
    77289    8.677499    0.344373    1
    33835    8.188005    0.964896    3
    71890    9.414263    0.384030    1
    32054    9.196547    1.138253    3
    38579    10.202968    0.452363    3
    55984    2.119439    1.481661    1
    72694    13.635078    0.858314    1
    42299    0.083443    0.701669    1
    26635    9.149096    1.051446    3
    8579    1.933803    1.374388    2
    37302    14.115544    0.676198    3
    22878    8.933736    0.943352    3
    4364    2.661254    0.946117    2
    4985    0.988432    1.305027    2
    37068    2.063741    1.125946    1
    41137    2.220590    0.690754    1
    67759    6.424849    0.806641    1
    11831    1.156153    1.613674    2
    34502    3.032720    0.601847    1
    4088    3.076828    0.952089    2
    15199    0.000000    0.318105    2
    17309    7.750480    0.554015    3
    42816    10.958135    1.482500    3
    43751    10.222018    0.488678    3
    58335    2.367988    0.435741    1
    75039    7.686054    1.381455    1
    42878    11.464879    1.481589    3
    42770    11.075735    0.089726    3
    8848    3.543989    0.345853    2
    31340    8.123889    1.282880    3
    41413    4.331769    0.754467    3
    12731    0.120865    1.211961    2
    22447    6.116109    0.701523    3
    33564    7.474534    0.505790    3
    48907    8.819454    0.649292    3
    8762    6.802144    0.615284    2
    46696    12.666325    0.931960    3
    36851    8.636180    0.399333    3
    67639    11.730991    1.289833    1
    171    8.132449    0.039062    2
    26674    10.296589    1.496144    3
    8739    7.583906    1.005764    2
    66668    9.777806    0.496377    1
    68732    8.833546    0.513876    1
    69995    4.907899    1.518036    1
    82008    8.362736    1.285939    1
    25054    9.084726    1.606312    3
    33085    14.164141    0.560970    3
    41379    9.080683    0.989920    3
    39417    6.522767    0.038548    3
    12556    3.690342    0.462281    2
    39432    3.563706    0.242019    1
    38010    1.065870    1.141569    1
    69306    6.683796    1.456317    1
    38000    1.712874    0.243945    1
    46321    13.109929    1.280111    3
    66293    11.327910    0.780977    1
    22730    4.545711    1.233254    1
    5952    3.367889    0.468104    2
    72308    8.326224    0.567347    1
    60338    8.978339    1.442034    1
    13301    5.655826    1.582159    2
    27884    8.855312    0.570684    3
    11188    6.649568    0.544233    2
    56796    3.966325    0.850410    1
    8571    1.924045    1.664782    2
    4914    6.004812    0.280369    2
    10784    0.000000    0.375849    2
    39296    9.923018    0.092192    3
    13113    2.389084    0.119284    2
    70204    13.663189    0.133251    1
    46813    11.434976    0.321216    3
    11697    0.358270    1.292858    2
    44183    9.598873    0.223524    3
    2225    6.375275    0.608040    2
    29066    11.580532    0.458401    3
    4245    5.319324    1.598070    2
    34379    4.324031    1.603481    1
    44441    2.358370    1.273204    1
    2022    0.000000    1.182708    2
    26866    12.824376    0.890411    3
    57070    1.587247    1.456982    1
    32932    8.510324    1.520683    3
    51967    10.428884    1.187734    3
    44432    8.346618    0.042318    3
    67066    7.541444    0.809226    1
    17262    2.540946    1.583286    2
    79728    9.473047    0.692513    1
    14259    0.352284    0.474080    2
    6122    0.000000    0.589826    2
    76879    12.405171    0.567201    1
    11426    4.126775    0.871452    2
    2493    0.034087    0.335848    2
    19910    1.177634    0.075106    2
    10939    0.000000    0.479996    2
    17716    0.994909    0.611135    2
    31390    11.053664    1.180117    3
    20375    0.000000    1.679729    2
    26309    2.495011    1.459589    1
    33484    11.516831    0.001156    3
    45944    9.213215    0.797743    3
    4249    5.332865    0.109288    2
    6089    0.000000    1.689771    2
    7513    0.000000    1.126053    2
    27862    12.640062    1.690903    3
    39038    2.693142    1.317518    1
    19218    3.328969    0.268271    2
    62911    7.193166    1.117456    1
    77758    6.615512    1.521012    1
    27940    8.000567    0.835341    3
    2194    4.017541    0.512104    2
    37072    13.245859    0.927465    3
    15585    5.970616    0.813624    2
    25577    11.668719    0.886902    3
    8777    4.283237    1.272728    2
    29016    10.742963    0.971401    3
    21910    12.326672    1.592608    3
    12916    0.000000    0.344622    2
    10976    0.000000    0.922846    2
    79065    10.602095    0.573686    1
    36759    10.861859    1.155054    3
    50011    1.229094    1.638690    1
    1155    0.410392    1.313401    2
    71600    14.552711    0.616162    1
    30817    14.178043    0.616313    3
    54559    14.136260    0.362388    1
    29764    0.093534    1.207194    1
    69100    10.929021    0.403110    1
    47324    11.432919    0.825959    3
    73199    9.134527    0.586846    1
    44461    5.071432    1.421420    1
    45617    11.460254    1.541749    3
    28221    11.620039    1.103553    3
    7091    4.022079    0.207307    2
    6110    3.057842    1.631262    2
    79016    7.782169    0.404385    1
    18289    7.981741    0.929789    3
    43679    4.601363    0.268326    1
    22075    2.595564    1.115375    1
    23535    10.049077    0.391045    3
    25301    3.265444    1.572970    2
    32256    11.780282    1.511014    3
    36951    3.075975    0.286284    1
    31290    1.795307    0.194343    1
    38953    11.106979    0.202415    3
    35257    5.994413    0.800021    1
    25847    9.706062    1.012182    3
    32680    10.582992    0.836025    3
    62018    7.038266    1.458979    1
    9074    0.023771    0.015314    2
    33004    12.823982    0.676371    3
    44588    3.617770    0.493483    1
    32565    8.346684    0.253317    3
    38563    6.104317    0.099207    1
    75668    16.207776    0.584973    1
    9069    6.401969    1.691873    2
    53395    2.298696    0.559757    1
    28631    7.661515    0.055981    3
    71036    6.353608    1.645301    1
    71142    10.442780    0.335870    1
    37653    3.834509    1.346121    1
    76839    10.998587    0.584555    1
    9916    2.695935    1.512111    2
    38889    3.356646    0.324230    1
    39075    14.677836    0.793183    3
    48071    1.551934    0.130902    1
    7275    2.464739    0.223502    2
    41804    1.533216    1.007481    1
    35665    12.473921    0.162910    3
    67956    6.491596    0.032576    1
    41892    10.506276    1.510747    3
    38844    4.380388    0.748506    1
    74197    13.670988    1.687944    1
    14201    8.317599    0.390409    2
    3908    0.000000    0.556245    2
    2459    0.000000    0.290218    2
    32027    10.095799    1.188148    3
    12870    0.860695    1.482632    2
    9880    1.557564    0.711278    2
    72784    10.072779    0.756030    1
    17521    0.000000    0.431468    2
    50283    7.140817    0.883813    3
    33536    11.384548    1.438307    3
    9452    3.214568    1.083536    2
    37457    11.720655    0.301636    3
    17724    6.374475    1.475925    3
    43869    5.749684    0.198875    3
    264    3.871808    0.552602    2
    25736    8.336309    0.636238    3
    39584    9.710442    1.503735    3
    31246    1.532611    1.433898    1
    49567    9.785785    0.984614    3
    7052    2.633627    1.097866    2
    35493    9.238935    0.494701    3
    10986    1.205656    1.398803    2
    49508    3.124909    1.670121    1
    5734    7.935489    1.585044    2
    65479    12.746636    1.560352    1
    77268    10.732563    0.545321    1
    28490    3.977403    0.766103    1
    13546    4.194426    0.450663    2
    37166    9.610286    0.142912    3
    16381    4.797555    1.260455    2
    10848    1.615279    0.093002    2
    35405    4.614771    1.027105    1
    15917    0.000000    1.369726    2
    6131    0.608457    0.512220    2
    67432    6.558239    0.667579    1
    30354    12.315116    0.197068    3
    69696    7.014973    1.494616    1
    33481    8.822304    1.194177    3
    43075    10.086796    0.570455    3
    38343    7.241614    1.661627    3
    14318    4.602395    1.511768    2
    5367    7.434921    0.079792    2
    37894    10.467570    1.595418    3
    36172    9.948127    0.003663    3
    40123    2.478529    1.568987    1
    10976    5.938545    0.878540    2
    12705    0.000000    0.948004    2
    12495    5.559181    1.357926    2
    35681    9.776654    0.535966    3
    46202    3.092056    0.490906    1
    11505    0.000000    1.623311    2
    22834    4.459495    0.538867    1
    49901    8.334306    1.646600    3
    71932    11.226654    0.384686    1
    13279    3.904737    1.597294    2
    49112    7.038205    1.211329    3
    77129    9.836120    1.054340    1
    37447    1.990976    0.378081    1
    62397    9.005302    0.485385    1
    0    1.772510    1.039873    2
    15476    0.458674    0.819560    2
    40625    10.003919    0.231658    3
    36706    0.520807    1.476008    1
    28580    10.678214    1.431837    3
    25862    4.425992    1.363842    1
    63488    12.035355    0.831222    1
    33944    10.606732    1.253858    3
    30099    1.568653    0.684264    1
    13725    2.545434    0.024271    2
    36768    10.264062    0.982593    3
    64656    9.866276    0.685218    1
    14927    0.142704    0.057455    2
    43231    9.853270    1.521432    3
    66087    6.596604    1.653574    1
    19806    2.602287    1.321481    2
    41081    10.411776    0.664168    3
    10277    7.083449    0.622589    2
    7014    2.080068    1.254441    2
    17275    0.522844    1.622458    2
    31600    10.362000    1.544827    3
    59956    3.412967    1.035410    1
    42181    6.796548    1.112153    3
    51743    4.092035    0.075804    1
    5194    2.763811    1.564325    2
    30832    12.547439    1.402443    3
    7976    5.708052    1.596152    2
    14602    4.558025    0.375806    2
    41571    11.642307    0.438553    3
    55028    3.222443    0.121399    1
    5837    4.736156    0.029871    2
    39808    10.839526    0.836323    3
    20944    4.194791    0.235483    2
    22146    14.936259    0.888582    3
    42169    3.310699    1.521855    1
    7010    2.971931    0.034321    2
    3807    9.261667    0.537807    2
    29241    7.791833    1.111416    3
    52696    1.480470    1.028750    1
    42545    3.677287    0.244167    1
    24437    2.202967    1.370399    1
    16037    5.796735    0.935893    2
    8493    3.063333    0.144089    2
    68080    11.233094    0.492487    1
    59016    1.965570    0.005697    1
    11810    8.616719    0.137419    2
    68630    6.609989    1.083505    1
    7629    1.712639    1.086297    2
    71992    10.117445    1.299319    1
    13398    0.000000    1.104178    2
    26241    9.824777    1.346821    3
    11160    1.653089    0.980949    2
    76701    18.178822    1.473671    1
    32174    6.781126    0.885340    3
    45043    8.206750    1.549223    3
    42173    10.081853    1.376745    3
    69801    6.288742    0.112799    1
    41737    3.695937    1.543589    1
    46979    6.726151    1.069380    3
    79267    12.969999    1.568223    1
    4615    2.661390    1.531933    2
    32907    7.072764    1.117386    3
    37444    9.123366    1.318988    3
    569    3.743946    1.039546    2
    8723    2.341300    0.219361    2
    6024    0.541913    0.592348    2
    52252    2.310828    1.436753    1
    8358    6.226597    1.427316    2
    26166    7.277876    0.489252    3
    18471    0.000000    0.389459    2
    3386    7.218221    1.098828    2
    41544    8.777129    1.111464    3
    10480    2.813428    0.819419    2
    5894    2.268766    1.412130    2
    7273    6.283627    0.571292    2
    22272    7.520081    1.626868    3
    31369    11.739225    0.027138    3
    10708    3.746883    0.877350    2
    69364    12.089835    0.521631    1
    37760    12.310404    0.259339    3
    13004    0.000000    0.671355    2
    37885    2.728800    0.331502    1
    52555    10.814342    0.607652    3
    38997    12.170268    0.844205    3
    69698    6.698371    0.240084    1
    11783    3.632672    1.643479    2
    47636    10.059991    0.892361    3
    15744    1.887674    0.756162    2
    69058    8.229125    0.195886    1
    33057    7.817082    0.476102    3
    28681    12.277230    0.076805    3
    34042    10.055337    1.115778    3
    29928    3.596002    1.485952    1
    9734    2.755530    1.420655    2
    7344    7.780991    0.513048    2
    7387    0.093705    0.391834    2
    33957    8.481567    0.520078    3
    9936    3.865584    0.110062    2
    36094    9.683709    0.779984    3
    39835    10.617255    1.359970    3
    64486    7.203216    1.624762    1
    0    7.601414    1.215605    2
    39539    1.386107    1.417070    1
    66972    9.129253    0.594089    1
    15029    1.363447    0.620841    2
    44909    3.181399    0.359329    1
    38183    13.365414    0.217011    3
    37372    4.207717    1.289767    1
    0    4.088395    0.870075    2
    17786    3.327371    1.142505    2
    39055    1.303323    1.235650    1
    37045    7.999279    1.581763    3
    6435    2.217488    0.864536    2
    72265    7.751808    0.192451    1
    28152    14.149305    1.591532    3
    25931    8.765721    0.152808    3
    7538    3.408996    0.184896    2
    1315    1.251021    0.112340    2
    12292    6.160619    1.537165    2
    49248    1.034538    1.585162    1
    9025    0.000000    1.034635    2
    13438    2.355051    0.542603    2
    69683    6.614543    0.153771    1
    25374    10.245062    1.450903    3
    55264    3.467074    1.231019    1
    38324    7.487678    1.572293    3
    69643    4.624115    1.185192    1
    44058    8.995957    1.436479    3
    41316    11.564476    0.007195    3
    29119    3.440948    0.078331    1
    51656    1.673603    0.732746    1
    3030    4.719341    0.699755    2
    35695    10.304798    1.576488    3
    1537    2.086915    1.199312    2
    9083    6.338220    1.131305    2
    47744    8.254926    0.710694    3
    71372    16.067108    0.974142    1
    37980    1.723201    0.310488    1
    42385    3.785045    0.876904    1
    22687    2.557561    0.123738    1
    39512    9.852220    1.095171    3
    11885    3.679147    1.557205    2
    4944    9.789681    0.852971    2
    73230    14.958998    0.526707    1
    17585    11.182148    1.288459    3
    68737    7.528533    1.657487    1
    13818    5.253802    1.378603    2
    31662    13.946752    1.426657    3
    86686    15.557263    1.430029    1
    43214    12.483550    0.688513    3
    24091    2.317302    1.411137    1
    52544    10.069724    0.766119    3
    61861    5.792231    1.615483    1
    47903    4.138435    0.475994    1
    37190    12.929517    0.304378    3
    6013    9.378238    0.307392    2
    27223    8.361362    1.643204    3
    69027    7.939406    1.325042    1
    78642    10.735384    0.705788    1
    30254    11.592723    0.286188    3
    21704    10.098356    0.704748    3
    34985    9.299025    0.545337    3
    31316    11.158297    0.218067    3
    76368    16.143900    0.558388    1
    27953    10.971700    1.221787    3
    152    0.000000    0.681478    2
    9146    3.178961    1.292692    2
    75346    17.625350    0.339926    1
    26376    1.995833    0.267826    1
    35255    10.640467    0.416181    3
    19198    9.628339    0.985462    3
    12518    4.662664    0.495403    2
    25453    5.754047    1.382742    2
    12530    0.000000    0.037146    2
    62230    9.334332    0.198118    1
    9517    3.846162    0.619968    2
    71161    10.685084    0.678179    1
    1593    4.752134    0.359205    2
    33794    0.697630    0.966786    1
    39710    10.365836    0.505898    3
    16941    0.461478    0.352865    2
    69209    11.339537    1.068740    1
    4446    5.420280    0.127310    2
    9347    3.469955    1.619947    2
    55635    8.517067    0.994858    3
    65889    8.306512    0.413690    1
    10753    2.628690    0.444320    2
    7055    0.000000    0.802985    2
    7905    0.000000    1.170397    2
    53447    7.298767    1.582346    3
    9194    7.331319    1.277988    2
    61914    9.392269    0.151617    1
    15630    5.541201    1.180596    2
    79194    15.149460    0.537540    1
    12268    5.515189    0.250562    2
    33682    7.728898    0.920494    3
    26080    11.318785    1.510979    3
    19119    3.574709    1.531514    2
    30902    7.350965    0.026332    3
    63039    7.122363    1.630177    1
    51136    1.828412    1.013702    1
    35262    10.117989    1.156862    3
    42776    11.309897    0.086291    3
    64191    8.342034    1.388569    1
    15436    0.241714    0.715577    2
    14402    10.482619    1.694972    2
    6341    9.289510    1.428879    2
    14113    4.269419    0.134181    2
    6390    0.000000    0.189456    2
    8794    0.817119    0.143668    2
    43432    1.508394    0.652651    1
    38334    9.359918    0.052262    3
    34068    10.052333    0.550423    3
    30819    11.111660    0.989159    3
    22239    11.265971    0.724054    3
    28725    10.383830    0.254836    3
    57071    3.878569    1.377983    1
    72420    13.679237    0.025346    1
    28294    10.526846    0.781569    3
    9896    0.000000    0.924198    2
    65821    4.106727    1.085669    1
    7645    8.118856    1.470686    2
    71289    7.796874    0.052336    1
    5128    2.789669    1.093070    2
    13711    6.226962    0.287251    2
    22240    10.169548    1.660104    3
    15092    0.000000    1.370549    2
    5017    7.513353    0.137348    2
    10141    8.240793    0.099735    2
    35570    14.612797    1.247390    3
    46893    3.562976    0.445386    1
    8178    3.230482    1.331698    2
    55783    3.612548    1.551911    1
    1148    0.000000    0.332365    2
    10062    3.931299    0.487577    2
    74124    14.752342    1.155160    1
    66603    10.261887    1.628085    1
    11893    2.787266    1.570402    2
    50908    15.112319    1.324132    3
    39891    5.184553    0.223382    3
    65915    3.868359    0.128078    1
    65678    3.507965    0.028904    1
    62996    11.019254    0.427554    1
    36851    3.812387    0.655245    1
    36669    11.056784    0.378725    3
    38876    8.826880    1.002328    3
    26878    11.173861    1.478244    3
    46246    11.506465    0.421993    3
    12761    7.798138    0.147917    3
    35282    10.155081    1.370039    3
    68306    10.645275    0.693453    1
    31262    9.663200    1.521541    3
    34754    10.790404    1.312679    3
    13408    2.810534    0.219962    2
    30365    9.825999    1.388500    3
    10709    1.421316    0.677603    2
    24332    11.123219    0.809107    3
    45517    13.402206    0.661524    3
    6178    1.212255    0.836807    2
    10639    1.568446    1.297469    2
    29613    3.343473    1.312266    1
    22392    5.400155    0.193494    1
    51126    3.818754    0.590905    1
    53644    7.973845    0.307364    3
    51417    9.078824    0.734876    3
    24859    0.153467    0.766619    1
    61732    8.325167    0.028479    1
    71128    7.092089    1.216733    1
    27276    5.192485    1.094409    3
    30453    10.340791    1.087721    3
    18670    2.077169    1.019775    2
    70600    10.151966    0.993105    1
    12683    0.046826    0.809614    2
    81597    11.221874    1.395015    1
    69959    14.497963    1.019254    1
    8124    3.554508    0.533462    2
    18867    3.522673    0.086725    2
    80886    14.531655    0.380172    1
    55895    3.027528    0.885457    1
    31587    1.845967    0.488985    1
    10591    10.226164    0.804403    3
    70096    10.965926    1.212328    1
    53151    2.129921    1.477378    1
    11992    0.000000    1.606849    2
    33114    9.489005    0.827814    3
    7413    0.000000    1.020797    2
    10583    0.000000    1.270167    2
    58668    6.556676    0.055183    1
    35018    9.959588    0.060020    3
    70843    7.436056    1.479856    1
    14011    0.404888    0.459517    2
    35015    9.952942    1.650279    3
    70839    15.600252    0.021935    1
    3024    2.723846    0.387455    2
    5526    0.513866    1.323448    2
    5113    0.000000    0.861859    2
    20851    7.280602    1.438470    2
    40999    9.161978    1.110180    3
    15823    0.991725    0.730979    2
    35432    7.398380    0.684218    3
    53711    12.149747    1.389088    3
    64371    9.149678    0.874905    1
    9289    9.666576    1.370330    2
    60613    3.620110    0.287767    1
    18338    5.238800    1.253646    2
    22845    14.715782    1.503758    3
    74676    14.445740    1.211160    1
    34143    13.609528    0.364240    3
    14153    3.141585    0.424280    2
    9327    0.000000    0.120947    2
    18991    0.454750    1.033280    2
    9193    0.510310    0.016395    2
    2285    3.864171    0.616349    2
    9493    6.724021    0.563044    2
    2371    4.289375    0.012563    2
    13963    0.000000    1.437030    2
    2299    3.733617    0.698269    2
    5262    2.002589    1.380184    2
    4659    2.502627    0.184223    2
    17582    6.382129    0.876581    2
    27750    8.546741    0.128706    3
    9868    2.694977    0.432818    2
    18333    3.951256    0.333300    2
    3780    9.856183    0.329181    2
    18190    2.068962    0.429927    2
    11145    3.410627    0.631838    2
    68846    9.974715    0.669787    1
    26575    10.650102    0.866627    3
    48111    9.134528    0.728045    3
    43757    7.882601    1.332446    3
    datingTestSet2.txt
    data = np.loadtxt("datingTestSet2.txt",delimiter='	') #读取数据
    hob_data = data[:,:-1]
    hob_labels = data[:,-1]

    (二)归一化处理

    def dataNorm(data): #归一化操作
        mn = np.mean(data,0)
        sigma = np.std(data,0,ddof=0)
        return (data - mn)/sigma,mn,sigma

    (三)简单划分训练集,测试集

    #划分测试集和训练集数据
    hoRatio = 0.4 #测试集比例
    m = hob_labels.size
    m_test = int(hob_labels.size*hoRatio)
    
    hob_data_norm,mn,sigma = dataNorm(hob_data)
    #获取训练集数据
    X = hob_data_norm[:m-m_test,:]
    y = hob_labels[:m-m_test]
    #获取测试集数据
    X_test = hob_data_norm[m-m_test:m,:]
    y_test = hob_labels[m-m_test:m]

    (四)进行测试,获取错误率

    #进行测试
    error_count = 0
    
    for i in range(y_test.size):
        clf = KNNClassfy(X_test[i],X,y,3)
        if clf != y_test[i]:
            error_count = error_count + 1
            
        print("{} --- {}".format(clf,y_test[i]))
        
    print("error rate is:",error_count/y_test.size)

    (五)进行预测

    #进行预测
    resultList = ['not at all','in small doses','in large doses']
    hb_1 = float(input("爱好一:"))
    hb_2 = float(input("爱好二:"))
    hb_3 = float(input("爱好三:"))
    preData = np.array([[hb_1,hb_2,hb_3]])
    preData_norm = ((preData - mn)/sigma).flatten()

    clf = KNNClassfy(preData_norm,hob_data_norm,hob_labels,3)
    print("喜欢程度:{}".format(resultList[int(clf)-1]))

    三:手写数字识别

    (一)数据展示

    数据存放形式:比如7,是32*32像素

    文件存放形式:_前面是数字,_后面表示是该数字的第几种形式

    (二)数据读取---将图像转向量

    from os import listdir
    import codecs
    
    #将每一个数字文件转换为矩阵向量
    def image2Vector(filename):
        data = []
        with codecs.open(filename,'r') as fp:
            for i in range(32):
                linestr = fp.readline() #读取一行数据
                for j in range(32):
                    data.append(int(linestr[j])) #添加数据
            fp.close()
        return np.array(data)

    (三)获取训练集和测试集

    #获取数据集
    def getDataSet(path):
        #读取数据
        hwLabels = []
        filelist = listdir(path) #获取所有文件目录
        m = len(filelist)
        data = np.zeros((m,1024))
    
        #先获取标签值
        for i in range(m):
            filename = filelist[i]
            hwLabels.append(int(filename.split('_')[0])) #添加标签值
            data[i,:] = image2Vector("%s/%s"%(path,filename))
            
        return data,hwLabels
    #获取训练集
    data,labels = getDataSet("trainingDigits")
    
    #获取测试集
    data_test,labels_test = getDataSet("testDigits")
    print(data_test.shape)

    (三)实现KNN,改变部分

    def KNNClassfy(preData,dataSet,labels,k):
        distance = np.sum(np.power(dataSet - preData,2),1)  #注意:这里我们不进行开方,可以少算一次
        sortDistIdx = np.argsort(distance,0)  #小到大排序,获取索引
        labels_idx = {}
        for i in range(k):  #获取分类
            idx = sortDistIdx[i] #获取索引
            label = labels[idx] #获取标签
            labels_idx[label] = labels_idx.get(label,0)
        labels_sort = sorted(labels_idx.items(),key=lambda x:x[1],reverse=True)
        return labels_sort[0][0]  #获取最大可能分类

    (四)结果测试

    #进行测试
    error_count = 0
    for i in range(data_test.shape[0]):
        clf = KNNClassfy(data_test[i,:],data,labels,3)
        if clf != labels_test[i]:
            error_count += 1
    print(error_count)
    print("{} {}".format(error_count,error_count/data_test.shape[0]))

  • 相关阅读:
    Kafka文件存储机制那些事(转发)
    Kafka文件存储机制那些事(转发)
    消息队列设计精要(转发)
    RocketMQ原理解析-Broker(转发)
    Apache Kafka:下一代分布式消息系统(转发)
    新浪技术分享:我们如何扛下32亿条实时日志的分析处理(转发)
    消息队列技术介绍(转发)
    confluent kafka for .net
    kafka参考资料
    kafka架构(转发)
  • 原文地址:https://www.cnblogs.com/ssyfj/p/13045457.html
Copyright © 2011-2022 走看看