zoukankan      html  css  js  c++  java
  • C语言复习---迭代法,牛顿迭代法,二分法求根

    一:用迭代法求 x=√a。求平方根的迭代公式为:X(n+1)=(Xn+a/Xn) /2。

    #define _CRT_SECURE_NO_WARNINGS
    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    
    
    int main()
    {
        double x1, x2;
        float a;
        scanf("%f", &a);
        x2 = 1.0;
        do 
        {
            x1 = x2;
            x2 = (x1 + a / x1) / 2;
        } while (fabs(x1-x2)>pow(10,-5));
        printf("value:%lf", x2);
        system("pause");
        return 0;
    }

    二:用牛顿迭代法求方程在1.5附近的根(2x3-4x2+3x-6=0)

    例:方程求根牛顿迭代法 求方程 f(x)=x3+x2-3x-3=0在1.5附近的根

    f(x)=x^3+x^2-3x-3
    f'(x)=3x^2+2x-3
    x(n+1)=xn-f(xn)/f'(xn)
    令x1=1.5
    x2=1.777778
    x3=1.733361
    x4=1.732052
    x5=1.732051
    x6=1.732051
    如果精确到0.000001,则x=1.732051
    准确值=根号3

    重要公式

    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    
    
    int main()
    {
        double x1=0, x2;
        double fx1, fx2;
        x2 = 1.5;
        while (fabs(x1 - x2)>=1e-6)
        {
            x1 = x2;
            fx1 = 2 * x1*x1*x1 - 4 * x1*x1 + 3 * x1 - 6;  //f(xn)
            fx2 = 6 * x1*x1 - 8 * x1 + 3;           //f(xn)'
            x2 = x1 - fx1 / fx2;
        }
        printf("value:%lf", x2);
        system("pause");
        return 0;
    }

    三:二分法求方程的根

    给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下:
    1 确定区间[a,b],验证f(a)·f(b)<0(这是前提,选取的区间必须满足这个条件),给定精确度ξ.
    2 求区间(a,b)的中点c.
    3 计算f(c).
    
    (1) 若f(c)=0,则c就是函数的零点;
    (2) 若f(a)·f(c)<0,则令b=c;
    (3) 若f(c)·f(b)<0,则令a=c.
    (4) 判断是否达到精确度ξ:即若|a-b|<ξ,则得到零点近似值a(或b),否则重复2-4.

     

    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    
    double fx(double x)
    {
        return 2 * x*x*x - 4 * x*x + 3 * x - 6;
    }
    
    int main()
    {
        double x1 , x2;
        double fx1, fx2;
        double e = 1e-6;
    
        do 
        {
            printf("enter (x1,x2):
    ");
            scanf("%lf", &x1);
            scanf("%lf", &x2);
            if (x1>x2)
            {
                double temp = x1;
                x1 = x2;
                x2 = temp;
            }
            fx1 = fx(x1);
            fx2 = fx(x2);
        } while (fx1*fx2>0);
    
        if (fabs(fx1) < e)
            printf("solution1:%lf
    ", x1);
        else if (fabs(fx2) < e)
            printf("solution2:%lf
    ", x2);
        else
        {
            while (fabs(x1 - x2) >= e)
            {
                double mid = (x1 + x2) / 2;
                if (fx(mid)*fx2 < 0)
                    x1 = mid;
                else
                    x2 = mid;
            }
            printf("solution3:%lf", x2);
        }
        system("pause");
        return 0;
    }
  • 相关阅读:
    Pwn-warmup_csaw_2016 writeup
    操作系统习题总结
    操作系统-存储器管理部分(待更新)
    树与二叉树之间的互相转换
    黑客攻防技术宝典-反病毒篇笔记(三)
    jaegeropentracing的Java-client完整分布式追踪链
    jaegeropentracing的Java-client
    IDEA2018.2版本注册
    Spring整合CXF webservice restful 实例
    带有WS-Security验证的webservice
  • 原文地址:https://www.cnblogs.com/ssyfj/p/9382460.html
Copyright © 2011-2022 走看看