zoukankan      html  css  js  c++  java
  • 2019 ICPC Universidad Nacional de Colombia Programming Contest 题解

    2019 ICPC Universidad Nacional de Colombia Programming Contest 题解

    最近比较忙,题解写的有点水

    A. Amazon

    题意:给定 (n) 条直线,两条相互垂直的直线交点处要修建一个十字路口,询问需要修建几个十字路口。

    分析:这题题意相当坑,并不是求相互垂直的直线的不同交点数量,而是不同的“十字路口数量”,这有什么区别呢?参考下图:

    左边虽然有两对相互垂直的直线,但只要建一个“十字路口”,但右边需要建两个。

    看明白题意之后这题就不难了,跟 CCPC2019 秦皇岛站 A. Angle Beats 的做法是一样的,把所有直线用最简形式的向量存储,删除共线后计数即可。

    #include <bits/stdc++.h>
    #define mp make_pair
    #define ll long long
    using namespace std;
    void io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); }
    
    int __gcd(int a, int b) {
    	return b == 0 ? a : __gcd(b, a % b);
    }
    
    int main() {
    	io(); int t;
    	cin >> t;
    	while (t--) {
    		int n; cin >> n;
    		vector<pair<pair<int, int>, int> > p;
    		map<pair<int, int>, int> MP;
    		for (int i = 1; i <= n; ++i) {
    			int xa, ya, xb, yb;
    			cin >> xa >> ya >> xb >> yb;
    			int x = xb - xa, y = yb - ya;
    			int g = __gcd(x, y);
    			x /= g, y /= g;
    			if (y < 0) x = -x, y = -y;
    			else if (y == 0) x = abs(x);
    			p.emplace_back(mp(mp(x, y), xa * y - ya * x));
    		}
    		sort(p.begin(), p.end());
    		p.erase(unique(p.begin(), p.end()), p.end());
    
    		for (auto it : p) MP[it.first]++;
    		ll ans = 0;
    		for (auto it : p) {
    			int x = it.first.second, y = -it.first.first;
    			if (y < 0) x = -x, y = -y;
    			else if (y == 0) x = abs(x);
    			ans += MP[mp(x, y)];
    		}
    		cout << ans / 2ll << '
    ';
    	}
    }
    

    B. Boring Non-Palindrome

    题意:略。

    分析:水题。

    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    void io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); }
    
    int main() {
    	io(); string x, y;
    	cin >> x;
    	y = x; reverse(y.begin(), y.end());
    	for (int i = 0; i <= x.length(); ++i) {
    		string p = y.substr(y.size() - i, i);
    		string tmp = x + p;
    		string tp = tmp;
    		reverse(tp.begin(), tp.end());
    		if (tp == tmp) {
    			cout << tmp;
    			return 0;
    		}
    	}
    }
    

    C. Common Subsequence

    题意:给定两个由 (A,C,G,T) 构成的长度为 (n) 的字符串,求出他们的最长公共子序列,然后判断这个子序列的长度和 (0.99n) 的大小关系。

    分析(dp) ,队友秒了。

    #include<bits/stdc++.h>
    #define ll long long
    #define maxn 100100
    #define mod 998244353
    using namespace std;
    int dp[1010][1010];
    char s1[maxn], s2[maxn];
    int main() {
    	scanf("%s%s", s1, s2);
    	int n = strlen(s1);
    	int m = n / 100 + 1;
    	int ans = 0;
    	for (int i = 0; i <= m; i++) {
    		for (int j = 0; j <= m; j++) {
    			while (i + dp[i][j] < n && j + dp[i][j] < n && s1[i + dp[i][j]] == s2[j + dp[i][j]]) dp[i][j]++;
    			dp[i + 1][j] = max(dp[i + 1][j], dp[i][j]);
    			dp[i][j + 1] = max(dp[i][j + 1], dp[i][j]);
    			ans = max(ans, dp[i][j]);
    		}
    	}
    	if (ans * 100 >= n * 99) printf("Long lost brothers D:
    ");
    	else printf("Not brothers :(
    ");
    	return 0;
    }
    

    D. Do Not Try This Problem

    题意:给定一个字符串 (s)(q) 次修改,每次将 (i+ak) 这些位置的字母修改,询问修改完后的字符串。

    分析:数据水,暴力剪枝假算法过了。

    #define _CRT_SECURE_NO_WARNINGS
    #pragma GCC optimize(3)
    #pragma GCC optimize("Ofast")
    #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #pragma comment(linker, "/stack:200000000")
    #include <bits/stdc++.h>
    #define mp make_pair
    #define SIZE 100010
    #define ll long long
    using namespace std;
    void io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); }
    vector<pair<int, char> > in[SIZE];
    vector<pair<int, char> > out[SIZE];
    
    int main() {
    	io(); string s;
    	cin >> s;
    	s = " " + s;
    	int q; cin >> q;
    	vector<int> lazy(s.length(), 0);
    	for (int i = 1; i <= q; ++i) {
    		int p, a, k; char c;
    		cin >> p >> a >> k >> c;
    		if (a == 1) {
    			in[p].emplace_back(mp(i, c));
    			out[p + k + 1].emplace_back(mp(i, c));
    		}
    		else {
    			for (int j = 0; j <= k; ++j) {
    				s[p + a * j] = c;
    				lazy[p + a * j] = i;
    			}
    		}
    	}
    	set<pair<int, char> > st;
    	for (int i = 1; i < s.length(); ++i) {
    		for (auto it : in[i])
    			if (!st.count(it))
    				st.insert(it);
    		for (auto it : out[i])
    			if (st.count(it))
    				st.erase(it);
    		if (st.size()) {
    			if (st.rbegin()->first > lazy[i]) cout << st.rbegin()->second;
    			else cout << s[i];
    		}
    		else cout << s[i];
    	}
    }
    

    E. Extreme Image

    题意:求一个扇形(剪掉一个小扇形)区域内最多能覆盖多少点。

    分析(POJ2482) 翻版,从水平扫描线变成旋转扫描线,不过还是一个标准的扫描线+线段树裸题。

    #include<bits/stdc++.h>
    #define ll long long
    #define maxn 100100
    #define mod 998244353
    #define eps 1e-8
    using namespace std;
    struct cv {
    	int x, y;
    }a[maxn * 2];
    bool cmp(cv p, cv q) {
    	return p.y < q.y;
    }
    int tr[maxn * 4], lz[maxn * 4];
    void up(int x) {
    	tr[x] = max(tr[x * 2], tr[x * 2 + 1]);
    }
    void pe(int x) {
    	if (lz[x]) {
    		tr[x * 2] += lz[x];
    		tr[x * 2 + 1] += lz[x];
    		lz[x * 2] += lz[x];
    		lz[x * 2 + 1] += lz[x];
    		lz[x] = 0;
    	}
    }
    void cg(int x, int l, int r, int s, int e, int y) {
    	if (l >= s && r <= e) {
    		tr[x] += y;
    		lz[x] += y;
    		return;
    	}
    	pe(x);
    	int mid = (l + r) / 2;
    	if (mid >= s) cg(x * 2, l, mid, s, e, y);
    	if (mid < e) cg(x * 2 + 1, mid + 1, r, s, e, y);
    	up(x);
    }
    int main() {
    	int n, d, w;
    	double wi;
    	scanf("%d%d%lf", &n, &d, &wi);
    	w = (int)(wi * 100 + eps);
    	for (int i = 0; i < n; i++) {
    		scanf("%d%lf", &a[i].x, &wi);
    		a[i].y = (int)(wi * 100 + eps);
    	}
    	sort(a, a + n, cmp);
    	for (int i = 0; i < n; i++) {
    		a[i + n] = a[i];
    		a[i + n].y += 36000;
    	}
    	n *= 2;
    	int l = 0, r = 0, ans = 0;
    	memset(tr, 0, sizeof(tr));
    	memset(lz, 0, sizeof(lz));
    	while (r < n) {
    		int cnt = 0;
    		for (int i = r; i < n; i++) {
    			if (a[i].y == a[r].y) {
    				cg(1, 0, 100000, max(0, a[i].x - d), a[i].x, 1);
    				cnt++;
    			}
    			else break;
    		}
    		while (l < r) {
    			if (a[r].y - a[l].y > w) {
    				cg(1, 0, 100000, max(0, a[l].x - d), a[l].x, -1);
    				l++;
    			}
    			else break;
    		}
    		r += cnt;
    		ans = max(ans, tr[1]);
    	}
    	printf("%d
    ", ans);
    	return 0;
    }
    

    F. Fraction Formula

    题意:给出一个式子,求结果。

    分析:分数类大模拟,注意必定爆 (int) ,如果运算顺序不好还会爆 (long long)

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    #define int LL
    
    const int maxn = 2e5 + 5;
    char s[maxn];
    struct Fac {
        int x;
        int y;
        Fac() {}
        Fac(int x, int y) : x(x), y(y) {}
    
        void change() {
            x *= -1;
        }
    
        void trans() {
            if (!y) return;
            if (!x) {
                y = 1;
                return;
            }
            int gcd = __gcd(x, y);
            x /= gcd;
            y /= gcd;
            if (y < 0) {
                y *= -1;
                x *= -1;
            }
        }
    
        Fac friend operator+(const Fac& a, const Fac& b) {
            int lcm = a.y / __gcd(a.y, b.y) * b.y;
            int x1 = a.x * (lcm / a.y), x2 = b.x * (lcm / b.y);
            Fac res(x1 + x2, lcm);
            res.trans();
            return res;
        }
    
        void print() {
            cout << x << "/" << y << '
    ';
        }
    };
    
    vector<Fac> res;
    vector<int> fres;
    signed main() {
        while (~scanf("%s", s + 1)) {
            res.clear();
            int g = 1;
            fres.clear();
            fres.push_back(1);
    
            int len = strlen(s + 1);
            int f = g;
            for (int i = 1; i <= len; i++) {
                if (s[i] == '-') f *= -1;
                else if (s[i] == '+') f *= 1;
                else if (s[i] >= '0' && s[i] <= '9') {
                    int x = 0, y = 0, ff = 1;
                    while (s[i] != '/')
                        x = x * 10 + s[i] - '0',
                        i++;
                    i++;
                    if (s[i] == '-')
                        ff *= -1, i++;
                    while (s[i] >= '0' && s[i] <= '9')
                        y = y * 10 + s[i] - '0',
                        i++;
                    i--;
    
                    Fac a = Fac(x, y);
                    a.trans();
                    if (f * ff == -1) a.change();
                    f = g;
    
                    if (res.empty()) res.push_back(a);
                    else res.back() = res.back() + a;
                } else if (s[i] == '(') {
                    fres.push_back(f);
                    g = fres.back();
                    f = g;
                } else if (s[i] == ')') {
                    fres.pop_back();
                    g = fres.back();
                    f = g;
                }
            }
            res.back().trans();
            res.back().print();
        }
        return 0;
    }
    

    G. Graduation

    我也不知道是啥,队友秒了。

    #include<bits/stdc++.h>
    #define ll long long
    #define maxn 10010
    #define mod 998244353
    using namespace std;
    vector<int>b[maxn];
    int ans[maxn];
    void sol(int x, int d) {
    	ans[d]++;
    	for (int i = 0; i < b[x].size(); i++) {
    		sol(b[x][i], d + 1);
    	}
    }
    int main() {
    	int n, k;
    	scanf("%d%d", &n, &k);
    	for (int i = 1; i <= n; i++) {
    		int x;
    		scanf("%d", &x);
    		b[x].push_back(i);
    	}
    	sol(0, 0);
    	int r = maxn - 1;
    	while (!ans[r]) r--;
    	int sum = 0, num = 0;
    	for (int i = r; i > 0; i--) {
    		sum += ans[i];
    		num++;
    		while (num * k < sum) num++;
    	}
    	printf("%d
    ", num);
    	return 0;
    }
    

    H. Hardest Challenge

    题意:略。

    分析:折半搜索。

    #define _CRT_SECURE_NO_WARNINGS
    #pragma GCC optimize(3)
    #pragma GCC optimize("Ofast")
    #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #pragma comment(linker, "/stack:200000000")
    #include <bits/stdc++.h>
    #define SIZE 5000100
    #define ll long long
    using namespace std;
    void io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); }
    const ll mod = 1e15 + 37;
    vector<string> s(3);
    ll a[SIZE], b[SIZE], p[30];
    int pa, pb, n, m;
    
    void dfs(int pos, ll sum, ll a[], int& cnt, int m) {
    	if (pos == m) {
    		a[cnt++] = sum;
    		return;
    	}
    	for (int i = 0; i < 3; ++i) {
    		ll tmp = (sum + 1ll * s[i][pos] * p[n - 1 - pos] % mod) % mod;
    		dfs(pos + 1, tmp, a, cnt, m);
    	}
    }
    
    ll solve() {
    	for (int i = 0; i < 3; ++i) cin >> s[i];
    	n = s[0].length();
    	pa = pb = 0;
    	m = n >> 1;
    	dfs(0, 0, a, pa, m);
    	dfs(m, 0, b, pb, n);
    	sort(a, a + pa);
    	sort(b, b + pb);
    	a[pa] = a[0] + mod;
    	b[pb] = b[0] + mod;
    	int pos = pa;
    	ll ans = mod;
    	for (int i = 0; i < pb; ++i) {
    		while (pos > 0 && b[i] + a[pos - 1] >= mod) --pos;
    		ans = min(ans, a[pos] + b[i] - mod);
    	}
    	return ans;
    }
    
    int main() {
    	io(); p[0] = 1;
    	for (int i = 1; i < 30; ++i) p[i] = p[i - 1] * 127ll % mod;
    	int x; cin >> x >> x;
    	ll A = solve();
    	ll B = solve();
    	if (A < B) cout << "Owls";
    	else if (A > B) cout << "Goats";
    	else cout << "Tie";
    }
    

    I. Integer Prefix

    题意:找最长的前缀数字。

    分析:签到。

    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    void io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); }
    
    int main() {
    	io(); string s;
    	cin >> s;
    	bool f = false;
    	for (auto i : s) {
    		if (i >= '0' && i <= '9') {
    			f = true;
    			cout << i;
    		}
    		else break;
    	}
    	if (!f) cout << "-1";
    }
    

    J. Jail Destruction

    队友说是简单的线段树。

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1e5 + 5;
    typedef long long LL;
    int a[maxn];
    namespace Segement {
    	const LL inf = 0X3f3f3f3f3f3f3f3f;
    	LL tree[maxn << 2], vis[maxn << 2], h[maxn << 2];
    	LL lazy[maxn << 2];
    	void build(int root, int left, int right)
    	{
    		if (left == right) {
    			vis[root] = 1;
    			h[root] = tree[root] = a[left];
    			return;
    		}
    		int mid = (left + right) >> 1;
    		build(root << 1, left, mid);
    		build(root << 1 | 1, mid + 1, right);
    		h[root] = min(h[root << 1], h[root << 1 | 1]);
    		vis[root] = vis[root << 1] + vis[root << 1 | 1];
    		tree[root] = tree[root << 1] + tree[root << 1 | 1];
    	}
    	void pushdown(int root)
    	{
    		if (!lazy[root])
    			return;
    		h[root << 1] -= lazy[root];
    		h[root << 1 | 1] -= lazy[root];
    		tree[root << 1] -= vis[root << 1] * lazy[root];
    		tree[root << 1 | 1] -= vis[root << 1 | 1] * lazy[root];
    		lazy[root << 1] += lazy[root];
    		lazy[root << 1 | 1] += lazy[root];
    		lazy[root] = 0;
    	}
    	void update(int root, int left, int right, int stdl, int stdr, LL val)
    	{
    		if (left >= stdl && right <= stdr && val <= h[root]) {
    			h[root] -= val;
    			tree[root] -= vis[root] * val;
    			lazy[root] += val;
    			return;
    		}
    		if (left == right && h[root] < val) {
    			tree[root] = vis[root] = 0;
    			h[root] = inf;
    			return;
    		}
    		pushdown(root);
    
    		int mid = (left + right) >> 1;
    		if (stdl <= mid)
    			update(root << 1, left, mid, stdl, stdr, val);
    		if (stdr > mid)
    			update(root << 1 | 1, mid + 1, right, stdl, stdr, val);
    		h[root] = min(h[root << 1], h[root << 1 | 1]);
    		vis[root] = vis[root << 1] + vis[root << 1 | 1];
    		tree[root] = tree[root << 1] + tree[root << 1 | 1];
    	}
    	LL query(int root, int left, int right, int stdl, int stdr)
    	{
    		if (left >= stdl && right <= stdr) {
    			return tree[root];
    		}
    		pushdown(root);
    
    		LL res = 0;
    		int mid = (left + right) >> 1;
    		if (stdl <= mid)
    			res += query(root << 1, left, mid, stdl, stdr);
    		if (stdr > mid)
    			res += query(root << 1 | 1, mid + 1, right, stdl, stdr);
    		return res;
    	}
    }
    
    int main()
    {
    	int n, q;
    	scanf("%d%d", &n, &q);
    	for (int i = 1; i <= n; i++)
    		scanf("%d", &a[i]);
    	Segement::build(1, 1, n);
    
    	int p, a, b, w;
    	while (q--) {
    		scanf("%d", &p);
    		if (p == 1) {
    			scanf("%d%d", &a, &b);
    			LL ans;
    			if (a <= b)
    				ans = Segement::query(1, 1, n, a, b);
    			else
    				ans = Segement::query(1, 1, n, a, n) + Segement::query(1, 1, n, 1, b);
    			printf("%lld
    ", ans);
    		}
    		else {
    			scanf("%d%d%d", &a, &b, &w);
    			if (a <= b)
    				Segement::update(1, 1, n, a, b, w);
    			else
    				Segement::update(1, 1, n, a, n, w),
    				Segement::update(1, 1, n, 1, b, w);
    		}
    	}
    
    	return 0;
    }
    

    K. Kernel Of Love

    队友说是签到。

    #include <bits/stdc++.h>
    using namespace std;
     
    int main()
    {
        int t;
        scanf("%d", &t);
     
        while (t--) {
            int n;
            scanf("%d", &n);
     
            int ans = n / 3;
            if (ans)
                ans = (ans - 1) * 2 + 1;
            if (n / 3 && n % 3)
                ans++;
     
            if (n >= 3)
                ans++;
            printf("%d
    ", ans);
        }
     
        return 0;
    }
    

    L. Liquid X

    题意:交互题,给定一堆试管,每次能够用这些试管加入试剂,加多了会变红,少了会变绿,正好会变黄,询问应该加多少试剂,或者判断不能求出应该加入多少试剂。

    分析:用背包把所有可以表示的求出来,然后二分。

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1e6 + 5;
    bool dp[maxn];
    int pre[maxn], p[maxn];
    
    int n, a[105], vis[105];
    int cnt[maxn];
    
    void check(int mid)
    {
        int now = cnt[mid];
        memset(vis, 0, sizeof(vis));
        while (now) {
            vis[p[now - pre[now]]]++;
            now = pre[now];
        }
        printf("1
    ");
        for (int i = 1; i <= n; i++)
            printf("%d ", vis[i]);
        printf("
    ");
        fflush(stdout);
    }
    
    int main()
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
    
        int limit = 1e6;
        dp[0] = true;
        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= limit - a[i]; j++)
                if (dp[j])
                    dp[j + a[i]] = true,
                           pre[j + a[i]] = j;
        }
        int k = 0;
        for (int i = 1; i <= limit; i++)
            if (dp[i])
                cnt[++k] = i;
    
        for (int i = 1; i <= n; i++)
            p[a[i]] = i;
        char s[20];
        int left = 1, right = k, mid, ans = -1;
        while (left <= right) {
            mid = (left + right) >> 1;
            check(mid);
            scanf("%s", s + 1);
            if (s[1] == 'y') {
                ans = cnt[mid];
                break;
            } else if (s[1] == 'g')
                left = mid + 1;
            else
                right = mid - 1;
        }
    
        if (ans == -1) {
            if (cnt[mid] == 2 && s[1] == 'r')
                ans = 1;
            if (cnt[mid] == limit - 1 && s[1] == 'g')
                ans = limit;
            if (abs(cnt[right] - cnt[left]) == 2)
                ans = min(cnt[left], cnt[right]) + 1;
        }
    
        printf("2
    %d
    ", ans);
        fflush(stdout);
    
        return 0;
    }
    
  • 相关阅读:
    5359. 最大的团队表现值
    Trie树模板
    [NOIP 2009] 细胞分裂(选做)
    【SpringCloud】07.应用间的通信
    【SpringCloud】06.Eureka 总结
    【SpringCloud】05.Eureka的高可用
    【SpringCloud】04.SpringCloud Eureka Server与Client的创建
    【SpringCloud】03.微服务的设计原则
    【SpringCloud】02.微服务与SpringCloud
    【SpringCloud】01.常见软件架构的区别
  • 原文地址:https://www.cnblogs.com/st1vdy/p/12694911.html
Copyright © 2011-2022 走看看