zoukankan      html  css  js  c++  java
  • HDU 1225 覆盖的面积

    HDU_1225

        拓展一下求K次覆盖的矩形的并的话就是UVA_11983那个题了。感觉上用线段树处理矩形的并,首先就是要标记出哪些区间被覆盖了,其次就是要用类似dp的思想,用cover[i][j]表示在线段树上的节点i表示的范围内,覆盖了j次的线段总长度,同时cover[i][K]表示的是覆盖了K次及大于K次的线段的总长度,然后依据左右儿子的状态来更新cover[i][j]的状态。

    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #include<math.h>
    #define MAXD 2010
    #define zero 1e-8
    int N, M, cnt[4 * MAXD], K = 2;
    double ty[MAXD], cover[4 * MAXD][3];
    struct Seg
    {
        double x, y1, y2;
        int col;
    }seg[MAXD];
    int cmpy(const void *_p, const void *_q)
    {
        double *p = (double *)_p, *q = (double *)_q;
        return *p < *q ? -1 : 1;
    }
    int cmps(const void *_p, const void *_q)
    {
        Seg *p = (Seg *)_p, *q = (Seg *)_q;
        return p->x < q->x ? -1 : 1;
    }
    int dcmp(double x)
    {
        return fabs(x) < zero ? 0 : (x < 0 ? -1 : 1);
    }
    void build(int cur, int x, int y)
    {
        int mid = (x + y) >> 1, ls = cur << 1, rs = (cur << 1) | 1;
        memset(cover[cur], 0, sizeof(cover[cur]));
        cover[cur][0] = ty[y + 1] - ty[x];
        cnt[cur] = 0;
        if(x == y)
            return ;
        build(ls, x, mid);
        build(rs, mid + 1, y);
    }
    void init()
    {
        int i, j, k;
        double x1, x2, y1, y2;
        scanf("%d", &N);
        for(i = 0; i < N; i ++)
        {
            j = i << 1, k = (i << 1) | 1;
            scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
            seg[j].x = x1, seg[k].x = x2;
            seg[j].y1 = seg[k].y1 = y1, seg[j].y2 = seg[k].y2 = y2;
            seg[j].col = 1, seg[k].col = -1;
            ty[j] = y1, ty[k] = y2;
        }
        qsort(ty, N << 1, sizeof(ty[0]), cmpy);
        M = (N << 1) - 1;
        build(1, 0, M - 1);
    }
    void update(int cur, int x, int y)
    {
        int ls = cur << 1, rs = (cur << 1) | 1;
        memset(cover[cur], 0, sizeof(cover[cur]));
        if(cnt[cur] >= K)
            cover[cur][K] = ty[y + 1] - ty[x];
        else if(x == y)
            cover[cur][cnt[cur]] = ty[y + 1] - ty[x];
        else
        {
            int i;
            for(i = cnt[cur]; i <= K; i ++)
                cover[cur][i] += cover[ls][i - cnt[cur]] + cover[rs][i - cnt[cur]];
            for(i = K - cnt[cur] + 1; i <= K; i ++)
                cover[cur][K] += cover[ls][i] + cover[rs][i];
        }
    }
    void refresh(int cur, int x, int y, int s, int t, int c)
    {
        int mid = (x + y) >> 1, ls = cur << 1, rs = (cur << 1) | 1;
        if(x >= s && y <= t)
        {
            cnt[cur] += c;
            update(cur, x, y);
            return ;
        }
        if(mid >= s)
            refresh(ls, x, mid, s, t, c);
        if(mid + 1 <= t)
            refresh(rs, mid + 1, y, s, t, c);
        update(cur, x, y);
    }
    int BS(double x)
    {
        int min = 0, max = M + 1, mid;
        for(;;)
        {
            mid = (min + max) >> 1;
            if(mid == min)
                break;
            if(dcmp(ty[mid] - x) <= 0)
                min = mid;
            else
                max = mid;
        }
        return mid;
    }
    void solve()
    {
        int i, j, k;
        double ans = 0;
        qsort(seg, N << 1, sizeof(seg[0]), cmps);
        seg[N << 1].x = seg[(N << 1) - 1].x;
        for(i = 0; i < (N << 1); i ++)
        {
            j = BS(seg[i].y1), k = BS(seg[i].y2);
            if(j < k)
                refresh(1, 0, M - 1, j, k - 1, seg[i].col);
            ans += cover[1][K] * (seg[i + 1].x - seg[i].x);
        }
        printf("%.2f\n", ans);
    }
    int main()
    {
        int t;
        scanf("%d", &t);
        while(t --)
        {
            init();
            solve();
        }
        return 0;
    }
  • 相关阅读:
    MIR7预制发票扣除已经预制的数量(每月多次预制,未即时过账)
    CO15批次确定,标准的太蛋疼了
    CRM 价格批导2<上一个太多冗余>
    CRM 价格批导
    通用函数接口日志
    UI BOL 练习 get value set attr
    SAP 打开SAP物料帐期和财务账期
    CRM ORDER_MAINTAIN
    WEB UI 界面打印PDF
    SEND EMAIL SO_DOCUMENT_SEND_API1
  • 原文地址:https://www.cnblogs.com/staginner/p/2439856.html
Copyright © 2011-2022 走看看