zoukankan      html  css  js  c++  java
  • 【BJOI2019 Day1】简要题解

    T1:

    传送门

    很显然是要在AcAc自动机上dpdp
    一个显然的dpdpf[i][j][k]f[i][j][k]表示前ii个字符,当前在自动机的点jj,已经有kk个咒语的最大价值

    但是由于咒语最多有O(n2)O(n^2)个复杂度太差了
    由于maxvcmax sqrt[c]{prod v}不好处理
    考虑转成对数
    就变成maxvcmax frac{sum v}{c}

    就是一个显然的分数规划了
    复杂度O(nslogv)O(ns*logv)
    不过很卡精度,开大会wawa,开小也会wawa
    调了十多发才过

    #include<bits/stdc++.h>
    using namespace std;
    const int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ob==ib)?EOF:*ib++;
    }
    #define gc getchar
    inline int read(){
        char ch=gc();
        int res=0,f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    #define ll long long
    #define re register
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define pb push_back
    #define cs const
    #define bg begin
    inline void chemx(int &a,int b){a<b?a=b:0;}
    inline void chemn(int &a,int b){a>b?a=b:0;}
    cs int N=1505;
    cs double eps=5e-6;
    int n,m;
    double v[N],c[N];
    char t[N];
    namespace Ac{
    	int nxt[N][11],fail[N],tot,ed[N];
    	double f[N][N],val[N];pii pre[N][N];
    	cs double inf=-1e18;
    	queue<int> q;
    	vector<int> e[N];
    	int pos[N],idx[N],dfn,mxpos;
    	inline void insert(char *s,int id){
    		int p=0;
    		for(int i=0,len=strlen(s);i<len;i++){
    			int c=s[i]-'0';
    			if(!nxt[p][c])nxt[p][c]=++tot;
    			p=nxt[p][c];
    		}
    		ed[id]=p;
    	}
    	void dfs(int u){
    		if(u)pos[u]=++dfn,idx[dfn]=u;
    		for(int &v:e[u])
    		dfs(v);
    	}
    	inline void buildfail(){
    		for(int i=0;i<10;i++){
    			int v=nxt[0][i];
    			if(v)fail[v]=0,q.push(v);
    		}
    		while(!q.empty()){
    			int p=q.front();q.pop();
    			for(int c=0;c<10;c++){
    				int v=nxt[p][c];
    				if(!v)nxt[p][c]=nxt[fail[p]][c];
    				else fail[v]=nxt[fail[p]][c],q.push(v);
    			}
    		}
    		for(int i=1;i<=tot;i++)e[fail[i]].pb(i);
    		dfs(0);
    	}
    	inline void dp(){
    		for(int i=1,len=strlen(t+1);i<=len;i++){
    			if(t[i]=='.'){
    				for(int c=0;c<10;c++)
    				for(int p=0;p<=tot;p++)if(f[i-1][p]>inf){
    					int v=nxt[p][c];
    					double now=f[i-1][p]+val[v];
    					if(now>f[i][v])f[i][v]=now,pre[i][v]=pii(p,c);
    				}
    			}
    			else{
    				int c=t[i]-'0';
    				for(int p=0;p<=tot;p++)if(f[i-1][p]>inf){
    					int v=nxt[p][c];
    					double now=f[i-1][p]+val[v];
    					if(now>f[i][v])f[i][v]=now,pre[i][v]=pii(p,c);
    				}
    			}
    		}
    	}
    	inline bool check(double k){
    		for(int i=1;i<=tot;i++)val[i]=0;
    		for(int i=1;i<=m;i++)val[ed[i]]+=c[i]-k;
    		for(int i=1;i<=tot;i++)
    			val[idx[i]]+=val[fail[idx[i]]];
    		int len=strlen(t+1);
    		for(int j=0;j<=len;j++)for(int i=0;i<=tot;i++)f[j][i]=inf;
    		f[0][0]=0;
    		dp();
    		double mx=inf;mxpos=0;
    		for(int i=0;i<=tot;i++)
    			if(f[len][i]>mx)mx=f[len][i],mxpos=i;
    		return mx>eps;
    	}
    	int ans[N];
    	inline void write(int pp,int u){
    		if(!pp)return;
    		pii now=pre[pp][u];
    		ans[pp]=now.se;
    		write(pp-1,now.fi);
    	}
    	inline void solve(){
    		double l=0,r=0;
    		for(int i=1;i<=m;i++)c[i]=log(v[i]),r=max(r,c[i]);
    		while(l+eps<r){
    			double mid=(l+r)/2;
    			if(check(mid))l=mid;
    			else r=mid;
    		}
    		int len=strlen(t+1);
    		write(len,mxpos);
    		for(int i=1;i<=len;i++)cout<<ans[i];
    	}
    }
    char s[N];
    int main(){
    	n=read(),m=read();
    	scanf("%s",t+1);
    	for(int i=1;i<=m;i++){
    		scanf("%s",s);
    		Ac::insert(s,i),v[i]=read();
    	}
    	Ac::buildfail();
    	Ac::solve();
    }
    

    T2:

    f[i]f[i]表示长度为ii的方案数

    首先对于m=2m=2的情况
    可以很显然发现dpdp式是f[i]=f[i1]+f[i2]f[i]=f[i-1]+f[i-2]
    其实就是斐波那契数列

    所以实际上求的是i=lr(Fik)sum_{i=l}^r{F_ichoose k}
    考虑化简式子
    ans=1k!n=lrFnkans=frac{1}{k!}sum_{n=l}^{r}F_n^{underline k}
    =1k!n=lri=0k(1)kis(k,i)Fni=frac 1{k!}sum_{n=l}^{r}sum_{i=0}^{k}(-1)^{k-i}s(k,i)F_n^i

    考虑斐波那契数列通项公式
    A=15,B=A,x=(1+52),y=152A=frac 1{sqrt5},B=-A,x=(frac{1+sqrt 5}{2}),y=frac{1-sqrt 5}{2}
    那么Fi=Axi+ByiF_i=Ax^i+By^i

    ans=1k!n=lri=0ks(k,i)(1)ki(Axn+Byn)ians=frac 1{k!}sum_{n=l}^{r}sum_{i=0}^{k}s(k,i)(-1)^{k-i}(Ax^n+By^n)^i
    =1k!n=lri=0ks(k,i)(1)kij=0i(ij)AjBijxnjyn(ij)=frac 1{k!}sum_{n=l}^{r}sum_{i=0}^{k}s(k,i)(-1)^{k-i}sum_{j=0}^{i}{ichoose j}A^jB^{i-j}x^{nj}y^{n(i-j)}
    =1k!i=0ks(k,i)(1)kij=0i(ij)AjBijn=lr(xjyij)n=frac 1{k!}sum_{i=0}^{k}s(k,i)(-1)^{k-i}sum_{j=0}^{i}{ichoose j}A^jB^{i-j}sum_{n=l}^r(x^jy^{i-j})^n

    后面是一个等比数列,前面直接k2k^2枚举
    构造一个模意义下a+b5a+bsqrt 5这样的复数就可以做了

    至于m=3m=3的时候
    手玩一下可以发现递推式
    ii为奇数答案为00
    否则
    f[i]=3f[i2]+2f[i4]+2f[i6]+2f[i8]....f[i]=3*f[i-2]+2*f[i-4]+2*f[i-6]+2*f[i-8]....

    f[i]=4f[i2]f[i4]f[i]=4*f[i-2]-f[i-4]
    除以2之后就相当于是f[i]=4f[i1]f[i2]f[i]=4*f[i-1]-f[i-2]
    解一下特征方程算出来A=3+36,B=336,x=(2+3),y=(23)A=frac{3+sqrt 3}{6},B=frac{3-sqrt 3}{6},x=(2+sqrt 3),y=(2-sqrt 3)

    然后就和上面一样了

    #include<bits/stdc++.h>
    using namespace std;
    const int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ob==ib)?EOF:*ib++;
    }
    #define gc getchar
    inline int read(){
        char ch=gc();
        int res=0,f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    #define ll long long
    #define re register
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define pb push_back
    #define int long long
    #define cs const
    #define bg begin
    const int mod=998244353,G=3;
    inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
    inline void Add(int &a,int b){a=add(a,b);}
    inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
    inline void Dec(int &a,int b){a=dec(a,b);}
    inline int mul(int a,int b){return 1ll*a*b%mod;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,a=mul(a,a))(b&1)?(res=mul(res,a)):0;return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    inline void chemx(int &a,int b){a<b?a=b:0;}
    inline void chemn(int &a,int b){a>b?a=b:0;}
    int T;
    cs int inv2=Inv(2),inv6=Inv(6);
    ll I;
    struct plx{
    	int x,y;
    	plx(int _x=0,int _y=0):x(_x),y(_y){}
    	friend inline plx operator +(cs plx &a,cs plx &b){
    		return plx(add(a.x,b.x),add(a.y,b.y));
    	}
    	friend inline plx operator -(cs plx &a,cs plx &b){
    		return plx(dec(a.x,b.x),dec(a.y,b.y));
    	}
    	friend inline plx operator *(cs plx &a,cs plx &b){
    		return plx((1ll*a.x*b.x+I*a.y*b.y)%mod,(1ll*a.x*b.y+1ll*a.y*b.x)%mod);
    	}
    	friend inline plx operator +(cs plx &a,cs int &b){
    		return plx(add(a.x,b),a.y);
    	}
    	friend inline plx operator -(cs plx &a,cs int &b){
    		return plx(dec(a.x,b),a.y);
    	}
    	friend inline plx operator *(cs plx &a,cs int &b){
    		return plx(mul(a.x,b),mul(a.y,b));
    	}
    };
    inline plx pksm(plx a,ll b){
    	plx res(1,0);
    	for(;b;b>>=1,a=a*a)if(b&1)res=res*a;
    	return res;
    }
    inline plx pInv(plx x){
    	return plx(x.x,mod-x.y)*Inv(((1ll*x.x*x.x-I*x.y*x.y)%mod+mod)%mod);
    }
    plx X,Y,A,B;
    cs int N=555;
    ll l,r,L,R;
    int k,s[N][N],ifac[N],fac[N];
    inline int C(int n,int m){
    	return n<m?0:mul(fac[n],mul(ifac[m],ifac[n-m]));
    }
    inline void init(){
    	fac[0]=ifac[0]=1;
    	for(int i=1;i<N;i++)fac[i]=mul(fac[i-1],i);
    	ifac[N-1]=Inv(fac[N-1]);
    	for(int i=N-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
    	s[0][0]=1;
    	for(int i=1;i<N;i++)
    	for(int j=1;j<N;j++)
    	s[i][j]=add(s[i-1][j-1],mul(s[i-1][j],i-1));
    }
    inline void init1(){
    	I=5;
    	X=plx(inv2,inv2),Y=plx(inv2,mod-inv2),A=pInv(plx(0,1)),B=pInv(plx(0,mod-1));
    }
    inline void init2(){
    	I=3;
    	X=plx(2,1),Y=plx(2,mod-1),A=plx(inv2,inv6),B=plx(inv2,mod-inv6);
    }
    inline void solve(){
    	k=read();
    	int ans=0;
    	for(int j=0;j<=k;j++){
    		int coef=((k-j)&1)?mod-s[k][j]:s[k][j];
    		int res=0;
    		for(int t=0;t<=j;t++){
    			plx now=pksm(A,t)*pksm(B,j-t)*C(j,t),tmp=pksm(X,t)*pksm(Y,j-t);
    			if(tmp.x==1&&tmp.y==0)tmp=plx((r-l+1)%mod,0);
    			else tmp=(pksm(tmp,r+1)-pksm(tmp,l))*pInv(tmp-1);
    			Add(res,(now*tmp).x);
    		}
    		Add(ans,mul(res,coef));
    	}
    	cout<<mul(Inv((R-L+1)%mod),mul(ifac[k],ans))<<'
    ';
    }
    signed main(){
    	T=read();int tp=read();
    	init();
    	if(tp==2)init1();
    	else init2();
    	while(T--){
    		scanf("%lld%lld",&L,&R);
    		if(tp==2)l=L+1,r=R+1;
    		else l=(L+1)>>1,r=R>>1;
    		solve();
    	}
    }
    

    T3:

    AkAk

    出题人:这道题其实不难,只需要把几个细节想清楚就可以了

    咕咕咕

  • 相关阅读:
    过河卒 题解
    You Are the One solution
    D
    Find a way solution
    A
    入门训练 Fibonacci数列
    求平均成绩 题解
    海选女主角 题解
    子集生成和组合问题
    log4j
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328581.html
Copyright © 2011-2022 走看看