zoukankan      html  css  js  c++  java
  • 【洛谷P4389】—付公主的背包(多项式Exp+生成函数)

    传送门


    考虑直接构造生成函数f(x)=i=0ivmxiv=11xvf(x)=sum_{i=0}^{ivle m}x^{iv}=frac 1 {1-x^v}
    但是所有直接乘起来是O(nmlog)O(nmlog)

    考虑对所有函数取对数,加起来之后再ExpExp回来
    但是直接取LnLn也不可取

    考虑令g(x)=Ln(f(x))g(x)=Ln(f(x))
    取导后
    g(x)=f(x)f(x)=(1xv)i=0ivmivxiv1g'(x)=frac{f'(x)}{f(x)}=(1-x^v)sum_{i=0}^{ivle m}iv*x^{iv-1}

             =i=0ivmivxiv1i=0ivmivx(i+1)v1 =sum_{i=0}^{ivle m}iv*x^{iv-1}-sum_{i=0}^{ivle m}iv*x^{(i+1)*v-1}

             =i=0ivmvxiv1 =sum_{i=0}^{ivle m}vx^{iv-1}

    还原则得到
    g(x)=i=1ivmvivxivg(x)=sum_{i=1}^{ivle m}frac{v}{iv}x^{iv}

            =i=0ivm1ixiv =sum_{i=0}^{ivle m}frac{1}{i}x^{iv}

    考虑对于一个价值的vv
    只会出现mvfrac m v
    所以把v=[1,m]v=[1,m]全部计算得到gg的复杂度是O(mlogm)O(mlogm)

    然后做一次ExpExp还原回来就是了

    复杂度O(mlogm)O(mlogm)

    #include<bits/stdc++.h>
    using namespace std;
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0,f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    #define re register
    #define pb push_back
    #define cs const
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    cs int mod=998244353,G=3;
    inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
    inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
    inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){
    	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
    }
    cs int N=100005;
    #define poly vector<int>
    int rev[N<<2],inv[N<<2];
    int n,m,v[N];
    inline void ntt(poly &f,int lim,int kd){
    	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    	for(int a0,a1,mid=1;mid<lim;mid<<=1){
    		int wn=ksm(G,(mod-1)/(mid<<1));
    		for(int i=0;i<lim;i+=(mid<<1)){
    			int w=1;
    			for(int j=0;j<mid;j++,Mul(w,wn)){
    				a0=f[i+j],a1=mul(w,f[i+j+mid]);
    				f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    			}
    		}
    	}
    	if(kd==-1){
    		reverse(f.begin()+1,f.begin()+lim);
    		for(int inv=ksm(lim,mod-2),i=0;i<lim;i++)Mul(f[i],inv);
    	}
    }
    inline void init_rev(int lim){
    	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline poly mul(poly a,poly b){
    	int deg=a.size()+b.size()-1,lim=1;
    	while(lim<deg)lim<<=1;
    	init_rev(lim);
    	a.resize(lim),b.resize(lim);
    	ntt(a,lim,1),ntt(b,lim,1);
    	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
    	ntt(a,lim,-1),a.resize(deg);
    	return a;
    }
    inline poly Inv(poly a,int deg){
    	poly b(1,ksm(a[0],mod-2)),c;
    	for(int lim=4;lim<(deg<<2);lim<<=1){
    		c=a,c.resize(lim>>1);
    		init_rev(lim);
    		c.resize(lim),b.resize(lim);
    		ntt(b,lim,1),ntt(c,lim,1);
    		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
    		ntt(b,lim,-1),b.resize(lim>>1);
    	}
    	b.resize(deg);return b;
    }
    inline poly deriv(poly a){
    	for(int i=0;i<a.size();i++)a[i]=mul(a[i+1],i+1);
    	a.pop_back();return a;
    }
    inline poly integ(poly a){
    	a.pb(0);
    	for(int i=a.size()-1;i;i--)a[i]=mul(a[i-1],inv[i]);
    	a[0]=0;return a;
    }
    inline poly Ln(poly a,int lim){
    	a=integ(mul(deriv(a),Inv(a,lim))),a.resize(lim);
    	return a;
    }
    inline poly exp(poly a,int deg){
    	poly b(1,1),c;
    	for(int lim=2;lim<(deg<<1);lim<<=1){
    		c=Ln(b,lim);
    		for(int i=0;i<lim;i++)c[i]=dec(i<=m?a[i]:0,c[i]);
    		Add(c[0],1),b=mul(b,c),b.resize(lim);
    	}b.resize(deg);return b;
    }
    inline void init(){
    	inv[1]=1;
    	for(int i=2;i<N*4;i++)inv[i]=dec(0,mul(mod/i,inv[mod%i]));
    }
    poly f;
    int main(){
    	init();
    	n=read(),m=read(),f.resize(m+1);
    	for(int i=1;i<=n;i++)v[read()]++;
    	for(int i=1;i<=m;i++){
    		if(v[i]){
    			for(int j=1;j*i<=m;j++)
    			Add(f[j*i],mul(v[i],inv[j]));
    		}
    	}
    	f=exp(f,m+1);
    	for(int i=1;i<=m;i++)cout<<f[i]<<'
    ';
    }
    
  • 相关阅读:
    equals()与=的区别
    HashTable和HashMap的区别
    shell高级用法——磁盘管理 创建虚拟的磁盘映射到一个文件
    shell妙用之——dd命令合并多个烧录文件为一个flash镜像
    自动解包ROM 文件获取uboot,uboot-spl ,uImage, rootfs.tar.gz 并烧写SD卡
    运用层通过shell脚本直接操控gpio
    shell脚本之位运算+for循环+返回值承接+shell小数运算
    shell函数递归调用实现目录的对比拷贝
    用debootstrip制作debian环境的rootfs
    shell命令的高级使用之---选择性copy
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328721.html
Copyright © 2011-2022 走看看