zoukankan      html  css  js  c++  java
  • spark为什么比mapreduce运行速度快很多

    • 比较重要的2个原因

    –            1、基于内存

                   mapreduce任务每次都会把结果数据落地到磁盘,后续有其他的job需要依赖于前面job的输出结果,这里就需要进行大量的磁盘io操作,获取前面job的输出结果。性能非常低

        例如:select name,age from ( select * from user where address = 'beijing')
            ------------job2--------  ------------------job1-----------------------
        spark任务的输出结果可以保存在内存中,后续有其他的job需要依赖于前面job的输出结果,这里就只需要直接从内存中获取得到,大大减少磁盘io操作。

        spark框架适合于迭代计算
        job1----->job2----->job3----->job4----->job5----->jobN......

    –            2、进程和线程

                   mapreduce任务它是以进程的方式运行在yarn集群中,比如说一个mapreduce任务有100个MapTask,后期需要运行这100个task,就需要启动100个进程。
        spark任务它是以线程的方式运行在worker节点的executor进程中,比如说一个spark任务有100个MapTask,这里后期需要运行100个线程就可以了。
        可以这样极端一点:只需要启动一个进程,在一个进程中运行100个线程就可以了.开启一个进程比开启一个线程需要的时间和资源调度肯定是不一样,开启一个进程需要的时间远远大于线程.

  • 相关阅读:
    图片点击后直接下载
    输入网址到页面呈现,以及首屏加载
    RESTful
    html语义化标签
    git 初学解决错误
    爬虫
    Scrapy安转遇到问题
    前端补充
    django-ORM
    django-web聊天
  • 原文地址:https://www.cnblogs.com/starzy/p/12057804.html
Copyright © 2011-2022 走看看