在线程池出现之前,每次需要使用线程,都得创建一个线程。但是,在java的运行环境中,创建一个线程是非常耗费资源和时间的。是否可以把线程重复利用,减少线程的创建次数。基于此,java1.5中引入了java的线程池管理。试想如果让你来实现一个线程池的管理,你会怎么实现呢?
下面详细分析java ThreadPoolExecutor类的线程池原理。
线程池ThreadPoolExecutor的使用方,调用方式,是把任务提交到线程池,具体线程的创建和执行是透明的。ThreadPoolExecutor有两部分组成,一个是工作线程列表,另一个是等待队列。
一个执行任务加入线程池,可简化成下面三种情况。
1 当工作线程没有打到设定的最大线程数时,线程池将创建一个工作线程来执行任务。
2 当工作线程已经达到设定的最大线程时,任务将放入等待队列。
3 当工作线程已经达到设定的最大线程时,队列也排满后,加入的任务将被拒绝
ThreadPoolExecutor 有四个构造方法
构造方法一:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), defaultHandler); }
构造方法二:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, defaultHandler); }
构造方法三:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), handler); }
构造方法四:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
参数说明
int corePoolSize: 线程池启动后,核心线程最大数;当线程数小于corePoolSize时,加入一个任务,就创建一个线程
BlockingQueue<Runnable> workQueue: 当线程池的线程数达到corePoolSize后,新加入的任务将被加入到队列workQueue中,线程池中的线程执行完任务后,从workQueue中取任务执行
int maximumPoolSize:当线程池的线程数已经达到corePoolSize之后,workQueue的长度也已经放满之后,线程数继续增加,直到达到maximumPoolSize。所以上面构造方法里要求 maximumPoolSize < corePoolSize 是不被允许的。
long keepAliveTime:线程的空闲时间,TimeUnit unit是他的时间单位。当线程池中的线程数趋于corePoolSize和maximumPoolSize之间,线程的空闲时间达到keepAliveTime,将被回收。知道线程数降到corePoolSize数之后,就不在回收。如果用户调用方法allowsCoreThreadTimeOut()之后,如果线程空闲时间达到keepAliveTime,线程仍然能被回收
ThreadFactory threadFactory:创建线程的工厂类
RejectedExecutionHandler handler:是在线程池已经不能在创建线程了,workQueue队列也已经满了之后,在添加任务之后的拒绝策略。
前面三个构造方法,实际上都会调用到最后一个构造方法。前面三个构造方法和最后一个方法的不同在部分参数没有开放出去,采用了默认值的形式。这是我们一贯的模式,一个主的构造方法,其他构造方法在他上面构建多样化,很多参数都可以采用默认方式,设计出符合各种场景的构造方法。
上面列的参数中,有两个参数可以采用默认值 ThreadFactory threadFactory, RejectedExecutionHandler handler ; 构造方法一中,这两个参数都没传入,使用默认值;构造方法二中, RejectedExecutionHandler handler没传入,使用默认值; 构造方法三中 ThreadFactory threadFactory没传人,使用默认值。
这里先谈下线程池已经不在接收任务时,他的拒绝策略分析。有四种策略, CallerRunsPolicy、AbortPolicy、DiscardPolicy、DiscardOldestPolicy,AbortPolicy是线程池的默认拒绝策略。
public static class CallerRunsPolicy implements RejectedExecutionHandler { /** * Creates a {@code CallerRunsPolicy}. */ public CallerRunsPolicy() { } /** * Executes task r in the caller's thread, unless the executor * has been shut down, in which case the task is discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { // 只要线程池没有关闭,添加任务的线程将负责任务的执行 if (!e.isShutdown()) { r.run(); } } }
CallerRunsPolicy拒绝策略,线程池不能在接收任务后,只要线程池没有关闭,添加任务的线程将负责任务的执行
public static class AbortPolicy implements RejectedExecutionHandler { /** * Creates an {@code AbortPolicy}. */ public AbortPolicy() { } /** * Always throws RejectedExecutionException. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task * @throws RejectedExecutionException always */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { // 拒绝后,抛出异常 throw new RejectedExecutionException("Task " + r.toString() + " rejected from " + e.toString()); } }
AbortPolicy拒绝策略,线程池不能在接收任务后,在次添加,拒绝策略将抛出异常RejectedExecutionException
public static class DiscardPolicy implements RejectedExecutionHandler { /** * Creates a {@code DiscardPolicy}. */ public DiscardPolicy() { } /** * Does nothing, which has the effect of discarding task r. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { } }
DiscardPolicy拒绝策略,线程池不能在接收任务后,再次添加,什么都不做
public static class DiscardOldestPolicy implements RejectedExecutionHandler { /** * Creates a {@code DiscardOldestPolicy} for the given executor. */ public DiscardOldestPolicy() { } /** * Obtains and ignores the next task that the executor * would otherwise execute, if one is immediately available, * and then retries execution of task r, unless the executor * is shut down, in which case task r is instead discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) { e.getQueue().poll(); e.execute(r); } } }
DiscardOldestPolicy拒绝策略,线程池不能在接收任务后,再次添加,将会从队列头部去掉一个任务,把新任务加入队列。
上面四个策略,根据具体场景来使用,也可以使用默认策略AbortPolicy。
其他分析接下文 《ThreadPoolExecutor源码分析二》