zoukankan      html  css  js  c++  java
  • zoj 3212 K-Nice(构造)

    K-Nice

    Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge

    This is a super simple problem. The description is simple, the solution is simple. If you believe so, just read it on. Or if you don't, just pretend that you can't see this one.

    We say an element is inside a matrix if it has four neighboring elements in the matrix (Those at the corner have two and on the edge have three). An element inside a matrix is called "nice" when its value equals the sum of its four neighbors. A matrix is called "k-nice" if and only if k of the elements inside the matrix are "nice".

    Now given the size of the matrix and the value of k, you are to output any one of the "k-nice" matrix of the given size. It is guaranteed that there is always a solution to every test case.

    Input

    The first line of the input contains an integer T (1 <= T <= 8500) followed by T test cases. Each case contains three integers nmk (2 <= nm <= 15, 0 <= k <= (n - 2) * (m - 2)) indicating the matrix size n * m and it the "nice"-degree k.

    Output

    For each test case, output a matrix with n lines each containing m elements separated by a space (no extra space at the end of the line). The absolute value of the elements in the matrix should not be greater than 10000.

    Sample Input

    2
    4 5 3
    5 5 3

    Sample Output

    2 1 3 1 1
    4 8 2 6 1
    1 1 9 2 9
    2 2 4 4 3
    0 1 2 3 0
    0 4 5 6 0
    0 0 0 0 0
    0 0 0 0 0
    0 0 0 0 0

    #include <iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int t,n,m,k;
    int mp[20][20];
    int main()
    {
        while(~scanf("%d",&t))
        {
         for(;t>0;t--)
         {
             scanf("%d%d%d",&n,&m,&k);
             k=(n-2)*(m-2)-k;
             for(int i=1;i<=n;i++)
             {
                 printf("0");
                 for(int j=2;j<m;j++)
                    if (k>0) printf(" %d",k--);
                     else printf(" 0");
                printf(" 0
    ");
             }
         }
        }
        return 0;
    }
  • 相关阅读:
    Win下的批处理命令
    二分查找
    Leetcode504.Base 7七进制数
    Leetcode500.Keyboard Row键盘行
    Leetcode492.Construct the Rectangle构造矩形
    Leetcode485.Max Consecutive Ones最大连续1的个数
    Leetcode475.Heaters供暖器
    hdu1233还是畅通工程
    hdu1863畅通工程
    Leetcode459.Repeated Substring Pattern重复的子字符串
  • 原文地址:https://www.cnblogs.com/stepping/p/6401193.html
Copyright © 2011-2022 走看看