zoukankan      html  css  js  c++  java
  • HDU 3452 Bonsai(树形dp)

    Bonsai

    Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 33   Accepted Submission(s) : 13

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    After being assaulted in the parking lot by Mr. Miyagi following the "All Valley Karate Tournament", John Kreese has come to you for assistance. Help John in his quest for justice by chopping off all the leaves from Mr. Miyagi's bonsai tree!
    You are given an undirected tree (i.e., a connected graph with no cycles), where each edge (i.e., branch) has a nonnegative weight (i.e., thickness). One vertex of the tree has been designated the root of the tree.The remaining vertices of the tree each have unique paths to the root; non-root vertices which are not the successors of any other vertex on a path to the root are known as leaves.Determine the minimum weight set of edges that must be removed so that none of the leaves in the original tree are connected by some path to the root.

    Input

    The input file will contain multiple test cases. Each test case will begin with a line containing a pair of integers n (where 1 <= n <= 1000) and r (where r ∈ {1,……, n}) indicating the number of vertices in the tree and the index of the root vertex, respectively. The next n-1 lines each contain three integers ui vi wi (where ui, vi ∈ {1,……, n} and 0 <= wi <= 1000) indicating that vertex ui is connected to vertex vi by an undirected edge with weight wi. The input file will not contain duplicate edges. The end-of-file is denoted by a single line containing "0 0".

    Output

    For each input test case, print a single integer indicating the minimum total weight of edges that must be deleted in order to ensure that there exists no path from one of the original leaves to the root.

    Sample Input

    15 15
    1 2 1
    2 3 2
    2 5 3
    5 6 7
    4 6 5
    6 7 4
    5 15 6
    15 10 11
    10 13 5
    13 14 4
    12 13 3
    9 10 8
    8 9 2
    9 11 3
    0 0

    Sample Output

    16

    Source

    2009 Stanford Local ACM Programming Contest
     
    题意:
    形成一颗以r为根的树,让所有的叶子节点和r节点没有联系,切割一些边,使切割的边的值之和最小。
    题解:
    dp[i]表示以i节点为根节点,让叶子节点和i节点分开的最小代价。
    #include <iostream>
    #include<cstdio>
    #include<vector>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    struct node
    {
        int x,w;
        node(int a,int b){x=a; w=b;}
    };
    int n,r;
    vector<node> mp[1005];
    int dp[1005];
    void dfs(int k,int fa,int w)
    {
        dp[k]=w;
        int sum;
        if (mp[k].size()==1 && k!=r) sum=1000000;//如果已经到叶子节点了,那么要赋值最大,后面求出来的值在比较中才能有效。
          else sum=0;
       for(int i=0;i<mp[k].size();i++)
       {
           if (mp[k][i].x==fa) continue;
           dfs(mp[k][i].x,k,mp[k][i].w);
           sum+=dp[mp[k][i].x];
       }
       //printf("%d: %d
    ",k,sum);
       dp[k]=min(dp[k],sum);
    }
    int main()
    {
        while(~scanf("%d%d",&n,&r))
        {
            if (n==0 && r==0) break;
            for(int i=1;i<=n;i++) mp[i].clear();
            for(int i=1;i<n;i++)
            {
                int x,y,w;
                scanf("%d%d%d",&x,&y,&w);
                mp[x].push_back(node(y,w));
                mp[y].push_back(node(x,w));
            }
            memset(dp,0,sizeof(dp));
            dfs(r,-1,1000000);
            printf("%d
    ",dp[r]);
        }
    
        return 0;
    }
  • 相关阅读:
    敏捷开发原则与实践(七)之接口隔离原则
    敏捷开发原则与实践(六)之依赖倒置原则
    敏捷开发原则与实践(五)之替换原则
    敏捷开发原则与实践(四)之开放-关闭原则
    敏捷开发原则与实践(三)之 单一职责原则
    敏捷开发原则与实践(二)
    ios 3DTouch基本使用教程
    ios 关于正则表达式
    ios 含有textfield的viewcontroller随键盘弹起而改变位置
    ios 图片库和相机选择图片界面修改为简体中文
  • 原文地址:https://www.cnblogs.com/stepping/p/6402168.html
Copyright © 2011-2022 走看看