RXD and math
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 568 Accepted Submission(s): 306
Problem Description
RXD is a good mathematician.
One day he wants to calculate:
output the answer module 109+7.
1≤n,k≤1018
p1,p2,p3…pk are different prime numbers
One day he wants to calculate:
∑i=1nkμ2(i)×⌊nki−−−√⌋
output the answer module 109+7.
1≤n,k≤1018
μ(n)=1(n=1)
μ(n)=(−1)k(n=p1p2…pk)
μ(n)=0(otherwise)
p1,p2,p3…pk are different prime numbers
Input
There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k.
Output
For each test case, output "Case #x: y", which means the test case number and the answer.
Sample Input
10 10
Sample Output
Case #1: 999999937
Source
Recommend
题解:n^k % mod
注意 :n因为非常大所以在开始就要先用 mod 运算一遍
#include <iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include<queue> #include<map> #include<vector> using namespace std; const long long m=1e9+7; long long n,k; long long solve(long long a,long long b) { a=a%m; long long ans=1; while(b) { if (b&1)ans=(ans*a)%m; b>>=1; a=(a*a)%m; } return ans; } int main() { int cas=0; while(scanf("%lld%lld",&n,&k)!=EOF) { printf("Case #%d: %lld ",++cas,solve(n,k)); } return 0; }