zoukankan      html  css  js  c++  java
  • HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences

    Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 3   Accepted Submission(s) : 1

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

    Input

    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

    Output

    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

    Sample Input

    2
    4 0
    3 2
    1 2
    1 3
    

    Sample Output

    4
    2
    

    Source

    NWERC 2008
     
    题目大意:
    a 证明 b,且,b 证明 a,说明a和b相等
    a证明b,b证明c,可以得出 a 证明 c。 
    求最少再证明几次才能使得这些题都能互相证明
    题解:
    用Tarjan缩点,然后答案就是 max(入度=0,出度=0)。
    #include<bits/stdc++.h>
    using namespace std;
    int n,T,m,index,team_num;
    int low[20005],dfn[20005],team[20005],in[20005],out[20005];
    bool instack[20005];
    vector<int> mp[20005];
    stack<int> S;
    void Tarjan ( int u )
    {
        dfn[u]=low[u]=++index;
        S.push(u);
        instack[u]=1;
        for ( int i=0;i<mp[u].size();i++)
        {
            int v=mp[u][i];
            if (!dfn[v])
            {
                Tarjan (v) ;
                low[u]=min(low[u],low[v]);
            }
            else if (instack[v]) low[u]=min(low[u],dfn[v]);//是否在栈中
        }
        if (dfn[u]==low[u])  //构成强连通分量
        {
            team_num++; //组数
            while (1)   //同一组标号
            {
                int v=S.top(); S.pop();
                instack[v]=0;
                team[v]=team_num;
                if (v==u) break;
            }
        }
    }
    
    void dfs()
    {
        memset(team,0,sizeof(team));
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        memset(instack,0,sizeof(instack));
        team_num=0;
        index=0;
        for(int i=1;i<=n;i++)
            if (!dfn[i]) Tarjan(i);
    }
    
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++) mp[i].clear();
            for(int i=1;i<=m;i++)
            {
                int x,y;
                scanf("%d%d",&x,&y);
                mp[x].push_back(y);
            }
            dfs(); //缩点
            /*for(int i=1;i<=n;i++)
                printf("%d:%d
    ",i,team[i]);*/
    
           for(int i=1;i<=team_num;i++) in[i]=out[i]=0;
           for(int i=1;i<=n;i++)
            for(int j=0;j<mp[i].size();j++)
            {
                 if (team[i]!=team[mp[i][j]])
                 {
                     out[ team[i] ]++;
                     in[ team[mp[i][j]] ]++;
                 }
            }
            int innum=0,outnum=0;
            for(int i=1;i<=team_num;i++)
            {
               if (!in[i]) innum++;
               if (!out[i]) outnum++;
            }
            if (team_num==1) printf("0
    ");
              else printf("%d
    ",max(innum,outnum));
        }
        return 0;
    }
  • 相关阅读:
    项目实战12.1—企业级监控工具应用实战-zabbix安装与基础操作
    项目实战11—企业级nosql数据库应用与实战-redis的主从和集群
    项目10.2-企业级自动化运维工具---puppet详解
    项目实战10.1—企业级自动化运维工具应用实战-ansible
    项目实战9—企业级分布式存储应用与实战MogileFS、FastDFS
    项目实战2.3-Nginx的“远方表哥”—Tengine
    项目实战2.2—nginx 反向代理负载均衡、动静分离和缓存的实现
    项目实战8.2-Linux下Tomcat开启查看GC信息
    项目实战8.1—tomcat企业级Web应用服务器配置与会话保持
    项目实战7—Mysql实现企业级数据库主从复制架构实战
  • 原文地址:https://www.cnblogs.com/stepping/p/7667809.html
Copyright © 2011-2022 走看看