zoukankan      html  css  js  c++  java
  • HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences

    Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 3   Accepted Submission(s) : 1

    Font: Times New Roman | Verdana | Georgia

    Font Size: ← →

    Problem Description

    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

    Input

    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

    Output

    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

    Sample Input

    2
    4 0
    3 2
    1 2
    1 3
    

    Sample Output

    4
    2
    

    Source

    NWERC 2008
     
    题目大意:
    a 证明 b,且,b 证明 a,说明a和b相等
    a证明b,b证明c,可以得出 a 证明 c。 
    求最少再证明几次才能使得这些题都能互相证明
    题解:
    用Tarjan缩点,然后答案就是 max(入度=0,出度=0)。
    #include<bits/stdc++.h>
    using namespace std;
    int n,T,m,index,team_num;
    int low[20005],dfn[20005],team[20005],in[20005],out[20005];
    bool instack[20005];
    vector<int> mp[20005];
    stack<int> S;
    void Tarjan ( int u )
    {
        dfn[u]=low[u]=++index;
        S.push(u);
        instack[u]=1;
        for ( int i=0;i<mp[u].size();i++)
        {
            int v=mp[u][i];
            if (!dfn[v])
            {
                Tarjan (v) ;
                low[u]=min(low[u],low[v]);
            }
            else if (instack[v]) low[u]=min(low[u],dfn[v]);//是否在栈中
        }
        if (dfn[u]==low[u])  //构成强连通分量
        {
            team_num++; //组数
            while (1)   //同一组标号
            {
                int v=S.top(); S.pop();
                instack[v]=0;
                team[v]=team_num;
                if (v==u) break;
            }
        }
    }
    
    void dfs()
    {
        memset(team,0,sizeof(team));
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        memset(instack,0,sizeof(instack));
        team_num=0;
        index=0;
        for(int i=1;i<=n;i++)
            if (!dfn[i]) Tarjan(i);
    }
    
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++) mp[i].clear();
            for(int i=1;i<=m;i++)
            {
                int x,y;
                scanf("%d%d",&x,&y);
                mp[x].push_back(y);
            }
            dfs(); //缩点
            /*for(int i=1;i<=n;i++)
                printf("%d:%d
    ",i,team[i]);*/
    
           for(int i=1;i<=team_num;i++) in[i]=out[i]=0;
           for(int i=1;i<=n;i++)
            for(int j=0;j<mp[i].size();j++)
            {
                 if (team[i]!=team[mp[i][j]])
                 {
                     out[ team[i] ]++;
                     in[ team[mp[i][j]] ]++;
                 }
            }
            int innum=0,outnum=0;
            for(int i=1;i<=team_num;i++)
            {
               if (!in[i]) innum++;
               if (!out[i]) outnum++;
            }
            if (team_num==1) printf("0
    ");
              else printf("%d
    ",max(innum,outnum));
        }
        return 0;
    }
  • 相关阅读:
    ChaosBlade x SkyWalking 微服务高可用实践
    工商银行基于 Dubbo 构建金融微服务架构的实践-服务发现篇
    阿里 双11 同款流控降级组件 Sentinel Go 正式 GA,助力云原生服务稳稳稳
    我在阿里巴巴做 Serverless 云研发平台
    「更高更快更稳」,看阿里巴巴如何修炼容器服务「内外功」
    「云原生上云」后的聚石塔是如何应对 双11 下大规模应用挑战的
    从零入门 Serverless | SAE 的远程调试和云端联调
    利用 Arthas 解决启动 StandbyNameNode 加载 EditLog 慢的问题
    Arthas 实践——生产环境排查 CPU 飚高问题
    RocketMQ 很慢?引出了一个未解之谜
  • 原文地址:https://www.cnblogs.com/stepping/p/7667809.html
Copyright © 2011-2022 走看看