zoukankan      html  css  js  c++  java
  • JDK7集合框架源码阅读(四) LinkedHashMap

    基于版本jdk1.7.0_80

    java.util.LinkedHashMap

    代码如下

    /*
     * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    package java.util;
    import java.io.*;
    
    /**
     * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
     * with predictable iteration order.  This implementation differs from
     * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
     * all of its entries.  This linked list defines the iteration ordering,
     * which is normally the order in which keys were inserted into the map
     * (<i>insertion-order</i>).  Note that insertion order is not affected
     * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
     * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
     * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
     * the invocation.)
     *
     * <p>This implementation spares its clients from the unspecified, generally
     * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
     * without incurring the increased cost associated with {@link TreeMap}.  It
     * can be used to produce a copy of a map that has the same order as the
     * original, regardless of the original map's implementation:
     * <pre>
     *     void foo(Map m) {
     *         Map copy = new LinkedHashMap(m);
     *         ...
     *     }
     * </pre>
     * This technique is particularly useful if a module takes a map on input,
     * copies it, and later returns results whose order is determined by that of
     * the copy.  (Clients generally appreciate having things returned in the same
     * order they were presented.)
     *
     * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
     * provided to create a linked hash map whose order of iteration is the order
     * in which its entries were last accessed, from least-recently accessed to
     * most-recently (<i>access-order</i>).  This kind of map is well-suited to
     * building LRU caches.  Invoking the <tt>put</tt> or <tt>get</tt> method
     * results in an access to the corresponding entry (assuming it exists after
     * the invocation completes).  The <tt>putAll</tt> method generates one entry
     * access for each mapping in the specified map, in the order that key-value
     * mappings are provided by the specified map's entry set iterator.  <i>No
     * other methods generate entry accesses.</i> In particular, operations on
     * collection-views do <i>not</i> affect the order of iteration of the backing
     * map.
     *
     * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
     * impose a policy for removing stale mappings automatically when new mappings
     * are added to the map.
     *
     * <p>This class provides all of the optional <tt>Map</tt> operations, and
     * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
     * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
     * <tt>remove</tt>), assuming the hash function disperses elements
     * properly among the buckets.  Performance is likely to be just slightly
     * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
     * linked list, with one exception: Iteration over the collection-views
     * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
     * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
     * is likely to be more expensive, requiring time proportional to its
     * <i>capacity</i>.
     *
     * <p>A linked hash map has two parameters that affect its performance:
     * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
     * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
     * excessively high value for initial capacity is less severe for this class
     * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
     * by capacity.
     *
     * <p><strong>Note that this implementation is not synchronized.</strong>
     * If multiple threads access a linked hash map concurrently, and at least
     * one of the threads modifies the map structurally, it <em>must</em> be
     * synchronized externally.  This is typically accomplished by
     * synchronizing on some object that naturally encapsulates the map.
     *
     * If no such object exists, the map should be "wrapped" using the
     * {@link Collections#synchronizedMap Collections.synchronizedMap}
     * method.  This is best done at creation time, to prevent accidental
     * unsynchronized access to the map:<pre>
     *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
     *
     * A structural modification is any operation that adds or deletes one or more
     * mappings or, in the case of access-ordered linked hash maps, affects
     * iteration order.  In insertion-ordered linked hash maps, merely changing
     * the value associated with a key that is already contained in the map is not
     * a structural modification.  <strong>In access-ordered linked hash maps,
     * merely querying the map with <tt>get</tt> is a structural
     * modification.</strong>)
     *
     * <p>The iterators returned by the <tt>iterator</tt> method of the collections
     * returned by all of this class's collection view methods are
     * <em>fail-fast</em>: if the map is structurally modified at any time after
     * the iterator is created, in any way except through the iterator's own
     * <tt>remove</tt> method, the iterator will throw a {@link
     * ConcurrentModificationException}.  Thus, in the face of concurrent
     * modification, the iterator fails quickly and cleanly, rather than risking
     * arbitrary, non-deterministic behavior at an undetermined time in the future.
     *
     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
     * as it is, generally speaking, impossible to make any hard guarantees in the
     * presence of unsynchronized concurrent modification.  Fail-fast iterators
     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
     * Therefore, it would be wrong to write a program that depended on this
     * exception for its correctness:   <i>the fail-fast behavior of iterators
     * should be used only to detect bugs.</i>
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @param <K> the type of keys maintained by this map
     * @param <V> the type of mapped values
     *
     * @author  Josh Bloch
     * @see     Object#hashCode()
     * @see     Collection
     * @see     Map
     * @see     HashMap
     * @see     TreeMap
     * @see     Hashtable
     * @since   1.4
     */
    
    public class LinkedHashMap<K,V>
        extends HashMap<K,V>
        implements Map<K,V>
    {
    
        private static final long serialVersionUID = 3801124242820219131L;
    
        /**
         * The head of the doubly linked list.
         */
        private transient Entry<K,V> header;
    
        /**
         * The iteration ordering method for this linked hash map: <tt>true</tt>
         * for access-order, <tt>false</tt> for insertion-order.
         *
         * @serial
         */
        private final boolean accessOrder;
    
        /**
         * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
         * with the specified initial capacity and load factor.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public LinkedHashMap(int initialCapacity, float loadFactor) {
            super(initialCapacity, loadFactor);
            accessOrder = false;
        }
    
        /**
         * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
         * with the specified initial capacity and a default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity
         * @throws IllegalArgumentException if the initial capacity is negative
         */
        public LinkedHashMap(int initialCapacity) {
            super(initialCapacity);
            accessOrder = false;
        }
    
        /**
         * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
         * with the default initial capacity (16) and load factor (0.75).
         */
        public LinkedHashMap() {
            super();
            accessOrder = false;
        }
    
        /**
         * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
         * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
         * instance is created with a default load factor (0.75) and an initial
         * capacity sufficient to hold the mappings in the specified map.
         *
         * @param  m the map whose mappings are to be placed in this map
         * @throws NullPointerException if the specified map is null
         */
        public LinkedHashMap(Map<? extends K, ? extends V> m) {
            super(m);
            accessOrder = false;
        }
    
        /**
         * Constructs an empty <tt>LinkedHashMap</tt> instance with the
         * specified initial capacity, load factor and ordering mode.
         *
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @param  accessOrder     the ordering mode - <tt>true</tt> for
         *         access-order, <tt>false</tt> for insertion-order
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public LinkedHashMap(int initialCapacity,
                             float loadFactor,
                             boolean accessOrder) {
            super(initialCapacity, loadFactor);
            this.accessOrder = accessOrder;
        }
    
        /**
         * Called by superclass constructors and pseudoconstructors (clone,
         * readObject) before any entries are inserted into the map.  Initializes
         * the chain.
         */
        @Override
        void init() {
            header = new Entry<>(-1, null, null, null);
            header.before = header.after = header;
        }
    
        /**
         * Transfers all entries to new table array.  This method is called
         * by superclass resize.  It is overridden for performance, as it is
         * faster to iterate using our linked list.
         */
        @Override
        void transfer(HashMap.Entry[] newTable, boolean rehash) {
            int newCapacity = newTable.length;
            for (Entry<K,V> e = header.after; e != header; e = e.after) {
                if (rehash)
                    e.hash = (e.key == null) ? 0 : hash(e.key);
                int index = indexFor(e.hash, newCapacity);
                e.next = newTable[index];
                newTable[index] = e;
            }
        }
    
    
        /**
         * Returns <tt>true</tt> if this map maps one or more keys to the
         * specified value.
         *
         * @param value value whose presence in this map is to be tested
         * @return <tt>true</tt> if this map maps one or more keys to the
         *         specified value
         */
        public boolean containsValue(Object value) {
            // Overridden to take advantage of faster iterator
            if (value==null) {
                for (Entry e = header.after; e != header; e = e.after)
                    if (e.value==null)
                        return true;
            } else {
                for (Entry e = header.after; e != header; e = e.after)
                    if (value.equals(e.value))
                        return true;
            }
            return false;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         */
        public V get(Object key) {
            Entry<K,V> e = (Entry<K,V>)getEntry(key);
            if (e == null)
                return null;
            e.recordAccess(this);
            return e.value;
        }
    
        /**
         * Removes all of the mappings from this map.
         * The map will be empty after this call returns.
         */
        public void clear() {
            super.clear();
            header.before = header.after = header;
        }
    
        /**
         * LinkedHashMap entry.
         */
        private static class Entry<K,V> extends HashMap.Entry<K,V> {
            // These fields comprise the doubly linked list used for iteration.
            Entry<K,V> before, after;
    
            Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
                super(hash, key, value, next);
            }
    
            /**
             * Removes this entry from the linked list.
             */
            private void remove() {
                before.after = after;
                after.before = before;
            }
    
            /**
             * Inserts this entry before the specified existing entry in the list.
             */
            private void addBefore(Entry<K,V> existingEntry) {
                after  = existingEntry;
                before = existingEntry.before;
                before.after = this;
                after.before = this;
            }
    
            /**
             * This method is invoked by the superclass whenever the value
             * of a pre-existing entry is read by Map.get or modified by Map.set.
             * If the enclosing Map is access-ordered, it moves the entry
             * to the end of the list; otherwise, it does nothing.
             */
            void recordAccess(HashMap<K,V> m) {
                LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
                if (lm.accessOrder) {
                    lm.modCount++;
                    remove();
                    addBefore(lm.header);
                }
            }
    
            void recordRemoval(HashMap<K,V> m) {
                remove();
            }
        }
    
        private abstract class LinkedHashIterator<T> implements Iterator<T> {
            Entry<K,V> nextEntry    = header.after;
            Entry<K,V> lastReturned = null;
    
            /**
             * The modCount value that the iterator believes that the backing
             * List should have.  If this expectation is violated, the iterator
             * has detected concurrent modification.
             */
            int expectedModCount = modCount;
    
            public boolean hasNext() {
                return nextEntry != header;
            }
    
            public void remove() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
    
                LinkedHashMap.this.remove(lastReturned.key);
                lastReturned = null;
                expectedModCount = modCount;
            }
    
            Entry<K,V> nextEntry() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                if (nextEntry == header)
                    throw new NoSuchElementException();
    
                Entry<K,V> e = lastReturned = nextEntry;
                nextEntry = e.after;
                return e;
            }
        }
    
        private class KeyIterator extends LinkedHashIterator<K> {
            public K next() { return nextEntry().getKey(); }
        }
    
        private class ValueIterator extends LinkedHashIterator<V> {
            public V next() { return nextEntry().value; }
        }
    
        private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
            public Map.Entry<K,V> next() { return nextEntry(); }
        }
    
        // These Overrides alter the behavior of superclass view iterator() methods
        Iterator<K> newKeyIterator()   { return new KeyIterator();   }
        Iterator<V> newValueIterator() { return new ValueIterator(); }
        Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
    
        /**
         * This override alters behavior of superclass put method. It causes newly
         * allocated entry to get inserted at the end of the linked list and
         * removes the eldest entry if appropriate.
         */
        void addEntry(int hash, K key, V value, int bucketIndex) {
            super.addEntry(hash, key, value, bucketIndex);
    
            // Remove eldest entry if instructed
            Entry<K,V> eldest = header.after;
            if (removeEldestEntry(eldest)) {
                removeEntryForKey(eldest.key);
            }
        }
    
        /**
         * This override differs from addEntry in that it doesn't resize the
         * table or remove the eldest entry.
         */
        void createEntry(int hash, K key, V value, int bucketIndex) {
            HashMap.Entry<K,V> old = table[bucketIndex];
            Entry<K,V> e = new Entry<>(hash, key, value, old);
            table[bucketIndex] = e;
            e.addBefore(header);
            size++;
        }
    
        /**
         * Returns <tt>true</tt> if this map should remove its eldest entry.
         * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
         * inserting a new entry into the map.  It provides the implementor
         * with the opportunity to remove the eldest entry each time a new one
         * is added.  This is useful if the map represents a cache: it allows
         * the map to reduce memory consumption by deleting stale entries.
         *
         * <p>Sample use: this override will allow the map to grow up to 100
         * entries and then delete the eldest entry each time a new entry is
         * added, maintaining a steady state of 100 entries.
         * <pre>
         *     private static final int MAX_ENTRIES = 100;
         *
         *     protected boolean removeEldestEntry(Map.Entry eldest) {
         *        return size() > MAX_ENTRIES;
         *     }
         * </pre>
         *
         * <p>This method typically does not modify the map in any way,
         * instead allowing the map to modify itself as directed by its
         * return value.  It <i>is</i> permitted for this method to modify
         * the map directly, but if it does so, it <i>must</i> return
         * <tt>false</tt> (indicating that the map should not attempt any
         * further modification).  The effects of returning <tt>true</tt>
         * after modifying the map from within this method are unspecified.
         *
         * <p>This implementation merely returns <tt>false</tt> (so that this
         * map acts like a normal map - the eldest element is never removed).
         *
         * @param    eldest The least recently inserted entry in the map, or if
         *           this is an access-ordered map, the least recently accessed
         *           entry.  This is the entry that will be removed it this
         *           method returns <tt>true</tt>.  If the map was empty prior
         *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
         *           in this invocation, this will be the entry that was just
         *           inserted; in other words, if the map contains a single
         *           entry, the eldest entry is also the newest.
         * @return   <tt>true</tt> if the eldest entry should be removed
         *           from the map; <tt>false</tt> if it should be retained.
         */
        protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
            return false;
        }
    }
    View Code

    代码量493,因为只是做了一些扩展

    1. 接口分析

    LinkedHashMap继承于HashMap(只是对HashMap做了一些扩展,以及部分函数更高效的实现)

    Map接口

    2. 实现原理

    额外加了一个双向环形链表,用来记录Map内元素被最后一次访问的次序,链表节点定义如下

        private static class Entry<K,V> extends HashMap.Entry<K,V> {
            // These fields comprise the doubly linked list used for iteration.
            Entry<K,V> before, after;
    
            Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
                super(hash, key, value, next);
            }
        }

    3. 链表的更新

    重写了HashMap.addEntry方法

        void addEntry(int hash, K key, V value, int bucketIndex) {
            super.addEntry(hash, key, value, bucketIndex);//调用父类的HashMap.addEntry来维护table
    
            // Remove eldest entry if instructed
            Entry<K,V> eldest = header.after;//获取HashMap中最长时间无人访问的节点,然后根据removeEldestEntry方法的返回结果决定是否将这个节点移除
            if (removeEldestEntry(eldest)) {//removeEldestEntry方法可以在LinkedHashMap的子类中实现
                removeEntryForKey(eldest.key);
            }
        }

    重写了HashMap.createEntry方法

        void createEntry(int hash, K key, V value, int bucketIndex) {
            HashMap.Entry<K,V> old = table[bucketIndex];
            Entry<K,V> e = new Entry<>(hash, key, value, old);//创建LinkedHashMap.Entry节点
            table[bucketIndex] = e;//头插法将新节点插入table
            e.addBefore(header);//将新节点插入LinkedHashMap维护的链表
            size++;
        }

    重写了HashMap.get方法,get的时候会调用LinkedHashMap.recordAccess方法

        public V get(Object key) {
            Entry<K,V> e = (Entry<K,V>)getEntry(key);
            if (e == null)
                return null;
            e.recordAccess(this);
            return e.value;
        }
    
            void recordAccess(HashMap<K,V> m) {
                LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
                if (lm.accessOrder) {
                    lm.modCount++;
                    remove();
                    addBefore(lm.header);
                }
            }

    4. HashMap中某些方法更高效的实现

    重写了HashMap.transfer/HashMap.containValue方法,因为现在可以直接用维护的链表来遍历Map内的所有元素了,无需操作table,可以减少开销

        void transfer(HashMap.Entry[] newTable, boolean rehash) {
            int newCapacity = newTable.length;
            for (Entry<K,V> e = header.after; e != header; e = e.after) {
                if (rehash)
                    e.hash = (e.key == null) ? 0 : hash(e.key);
                int index = indexFor(e.hash, newCapacity);
                e.next = newTable[index];
                newTable[index] = e;
            }
        }
    
        public boolean containsValue(Object value) {
            // Overridden to take advantage of faster iterator
            if (value==null) {
                for (Entry e = header.after; e != header; e = e.after)
                    if (e.value==null)
                        return true;
            } else {
                for (Entry e = header.after; e != header; e = e.after)
                    if (value.equals(e.value))
                        return true;
            }
            return false;
        }

    5. 新的迭代器

    LinkedHashMap中有一个新的迭代器LinkedHashIterator,这个迭代器会利用LinkedHashMap维护的链表进行迭代,迭代结果的次序是Map内元素最后一次被访问的次序,跟HashMap等容器相同,在迭代器建立后如果再次修改原LinkedHashMap,会抛出ConcurrentModificationException。

        private abstract class LinkedHashIterator<T> implements Iterator<T> {
            Entry<K,V> nextEntry    = header.after;
            Entry<K,V> lastReturned = null;
    
            /**
             * The modCount value that the iterator believes that the backing
             * List should have.  If this expectation is violated, the iterator
             * has detected concurrent modification.
             */
            int expectedModCount = modCount;
    
            public boolean hasNext() {
                return nextEntry != header;
            }
    
            public void remove() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
    
                LinkedHashMap.this.remove(lastReturned.key);
                lastReturned = null;
                expectedModCount = modCount;
            }
    
            Entry<K,V> nextEntry() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                if (nextEntry == header)
                    throw new NoSuchElementException();
    
                Entry<K,V> e = lastReturned = nextEntry;
                nextEntry = e.after;
                return e;
            }
        }

    6. 实际作用

    最直接的想法就是可以用LinkedHashMap来实现LRU Cache,在初始化的时候,为Cache设定一个阈值,当Cache内的元素数量到达这个阈值后,自动踢出最长时间没有被使用过的对象

    点了一下子类之后发现,Druid等框架中确实有LRUCache的实现类继承于LinkedHashMap

  • 相关阅读:
    Xcode编译项目出现访问private key提示框
    Mac开机黑屏解决办法
    Mac OS X 系统下快速显示隐藏文件的方法(使用Automator创建workflow)
    cocos2d-x编译错误问题
    解决mac上Android开发时出现的ADB server didn't ACK
    学习笔记之linux下如何调用第三方库的函数接口
    学习笔记之vim的使用
    学习笔记之postgresql
    学习笔记之libevent
    学习笔记之windows 网络编程
  • 原文地址:https://www.cnblogs.com/stevenczp/p/7130892.html
Copyright © 2011-2022 走看看