zoukankan      html  css  js  c++  java
  • kafka系列 -- 多线程消费者实现

    看了一下kafka,然后写了消费Kafka数据的代码。感觉自己功力还是不够。

    1. 不能随心所欲地操作数据,数据结构没学好,spark的RDD操作没学好。
    2. 不能很好地组织代码结构,设计模式没学好,面向对象思想理解不够成熟。

    消费程序特点

    1. 用队列来存储要消费的数据。
    2. 用队列来存储要提交的offest,然后处理线程将其给回消费者提交。
    3. 每个分区开一个处理线程来处理数据,分区与处理器的映射放在map中。
    4. 当处理到一定的数量或者距离上一次处理一定的时间间隔后, 由poll线程进行提交offset。

    不好的地方:

    1. 每次处理的数据太少,而且每个数据都进行判断其分区是否已经有处理线程在处理了。
    2. 获取topic不太优雅。

    流程图

    下面是多线程消费者实现:

    1. 管理程序

    /**
     * 负责启动消费者线程MsgReceiver, 保存消费者线程MsgReceiver, 保存处理任务和线程RecordProcessor, 以及销毁这些线程
     * Created by stillcoolme on 2018/10/12.
     */
    public class KafkaMultiProcessorMain {
        private static final Logger logger = LoggerFactory.getLogger(KafkaMultiProcessorMain.class);
        // 消费者参数
        private Properties consumerProps = new Properties();
        // kafka消费者参数
        Map<String, Object> consumerConfig;
        //存放topic的配置
        Map<String, Object> topicConfig;
    
        //订阅的topic
        private String alarmTopic;
        //消费者线程数组
        private Thread[] threads;
    
        //保存处理任务和线程的map
        ConcurrentHashMap<TopicPartition, RecordProcessor> recordProcessorTasks = new ConcurrentHashMap<>();
        ConcurrentHashMap<TopicPartition, Thread> recordProcessorThreads = new ConcurrentHashMap<>();
    
        public void setAlarmTopic(String alarmTopic) {
            this.alarmTopic = alarmTopic;
        }
    
        public static void main(String[] args) {
            KafkaMultiProcessorMain kafkaMultiProcessor = new KafkaMultiProcessorMain();
            //这样设置topic不够优雅啊!!!
            kafkaMultiProcessor.setAlarmTopic("picrecord");
    
            kafkaMultiProcessor.init(null);
        }
    
        private void init(String consumerPropPath) {
            getConsumerProps(consumerPropPath);
            consumerConfig = getConsumerConfig();
    
            int threadsNum = 3;
            logger.info("create " + threadsNum + " threads to consume kafka warn msg");
            threads = new Thread[threadsNum];
            for (int i = 0; i < threadsNum; i++) {
                MsgReceiver msgReceiver = new MsgReceiver(consumerConfig, alarmTopic, recordProcessorTasks, recordProcessorThreads);
                Thread thread = new Thread(msgReceiver);
                threads[i] = thread;
            }
            for (int i = 0; i < threadsNum; i++) {
                threads[i].start();
            }
            logger.info("finish creating" + threadsNum + " threads to consume kafka warn msg");
        }
    
        //销毁启动的线程
        public void destroy() {
            closeRecordProcessThreads();
            closeKafkaConsumer();
        }
    
        private void closeRecordProcessThreads() {
            logger.debug("start to interrupt record process threads");
            for (Map.Entry<TopicPartition, Thread> entry : recordProcessorThreads.entrySet()) {
                Thread thread = entry.getValue();
                thread.interrupt();
            }
            logger.debug("finish interrupting record process threads");
        }
    
        private void closeKafkaConsumer() {
            logger.debug("start to interrupt kafka consumer threads");
            //使用interrupt中断线程, 在线程的执行方法中已经设置了响应中断信号
            for (int i = 0; i < threads.length; i++) {
                threads[i].interrupt();
            }
            logger.debug("finish interrupting consumer threads");
        }
    
        private Map<String,Object> getConsumerConfig() {
            return ImmutableMap.<String, Object>builder()
                    .put("bootstrap.servers", consumerProps.getProperty("bootstrap.servers"))
                    .put("group.id", "group.id")
                    .put("enable.auto.commit", "false")
                    .put("session.timeout.ms", "30000")
                    .put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
                    .put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
                    .put("max.poll.records", 1000)
                    .build();
    
        }
    
        /**
         * 获取消费者参数
         *
         * @param proPath
         */
        private void getConsumerProps(String proPath) {
            InputStream inStream = null;
            try {
                if (StringUtils.isNotEmpty(proPath)) {
                    inStream = new FileInputStream(proPath);
                } else {
                    inStream = this.getClass().getClassLoader().getResourceAsStream("consumer.properties");
                }
                consumerProps.load(inStream);
            } catch (IOException e) {
                logger.error("读取consumer配置文件失败:" + e.getMessage(), e);
            } finally {
                if (null != inStream) {
                    try {
                        inStream.close();
                    } catch (IOException e) {
                        logger.error("读取consumer配置文件失败:" + e.getMessage(), e);
                    }
                }
            }
        }
    }
    

    2. 消费者任务 MsgReceiver

    /**
     * 负责调用 RecordProcessor进行数据处理
     * Created by zhangjianhua on 2018/10/12.
     */
    public class MsgReceiver implements Runnable {
    
        private static final Logger logger = LoggerFactory.getLogger(MsgReceiver.class);
    
        private BlockingQueue<Map<TopicPartition, OffsetAndMetadata>> commitQueue = new LinkedBlockingQueue<>();
    
        private ConcurrentHashMap<TopicPartition, Thread> recordProcessorThreads;
        private ConcurrentHashMap<TopicPartition, RecordProcessor> recordProcessorTasks;
        private String alarmTopic;
        private Map<String, Object> consumerConfig;
    
    
        public MsgReceiver(Map<String, Object> consumerConfig, String alarmTopic,
                           ConcurrentHashMap<TopicPartition, RecordProcessor> recordProcessorTasks,
                           ConcurrentHashMap<TopicPartition, Thread> recordProcessorThreads) {
    
            this.consumerConfig = consumerConfig;
            this.alarmTopic = alarmTopic;
            this.recordProcessorTasks = recordProcessorTasks;
            this.recordProcessorThreads = recordProcessorThreads;
        }
    
        @Override
        public void run() {
            //kafka Consumer是非线程安全的,所以需要每个线程建立一个consumer
            KafkaConsumer kafkaConsumer = new KafkaConsumer(consumerConfig);
            kafkaConsumer.subscribe(Arrays.asList(alarmTopic));
            try{
                while (!Thread.currentThread().isInterrupted()) {
                    try {
                        //看commitQueue里面是非有需要提交的offest, 这样查看好频繁啊!!!
                        //查看该消费者是否有需要提交的偏移信息, 使用非阻塞读取
                        Map<TopicPartition, OffsetAndMetadata> offestToCommit = commitQueue.poll();
                        if (offestToCommit != null) {
                            logger.info(Thread.currentThread().getName() + "commit offset: " + offestToCommit);
                            kafkaConsumer.commitAsync();
                        }
                        //最多轮询1000ms
                        ConsumerRecords<String, String> records = kafkaConsumer.poll(1000);
                        if (records.count() > 0) {
                            logger.info("poll records size: " + records.count());
                        }
                        for (ConsumerRecord record : records) {
                            String topic = record.topic();
                            int partition = record.partition();
                            TopicPartition topicPartition = new TopicPartition(topic, partition);
                            RecordProcessor processTask = recordProcessorTasks.get(topicPartition);
                            //每条消息都去检查
                            //如果当前分区还没有开始消费, 则就没有消费任务在map中
                            if (processTask == null) {
                                //生成新的处理任务和线程, 然后将其放入对应的map中进行保存
                                processTask = new RecordProcessor(commitQueue);
                                recordProcessorTasks.put(topicPartition, processTask);
    
                                Thread processTaskThread = new Thread(processTask);
                                processTaskThread.setName("Thread-for " + topicPartition.toString());
                                logger.info("start processor Thread: " + processTaskThread.getName());
                                processTaskThread.start();
                                recordProcessorThreads.put(topicPartition, processTaskThread);
                            }
                            //有 processor 可以处理该分区的 record了
                            processTask.addRecordToQueue(record);
                        }
                    } catch (Exception e) {
                        e.printStackTrace();
                        logger.warn("MsgReceiver exception " + e + " ignore it");
                    }
                }
            } finally {
                kafkaConsumer.close();
            }
        }
    }
    

    3. 消息处理任务 RecordProcessor

    public class RecordProcessor implements Runnable{
    
        private static Logger logger = LoggerFactory.getLogger(RecordProcessor.class);
    
        //保存MsgReceiver线程发送过来的消息
        private BlockingQueue<ConsumerRecord<String, String>> queue = new LinkedBlockingQueue<>();
        //用于向consumer线程提交消费偏移的队列
        private BlockingQueue<Map<TopicPartition, OffsetAndMetadata>> commitQueue;
        //上一次提交时间
        private LocalDateTime lastTime = LocalDateTime.now();
        //消费了20条数据, 就进行一次提交
        private long commitLength = 20L;
        //距离上一次提交多久, 就提交一次
        private Duration commitTime = Duration.standardSeconds(2);
        //当前该线程消费的数据条数
        private int completeTask = 0;
        //保存上一条消费的数据
        private ConsumerRecord<String, String> lastUncommittedRecord;
    
        public RecordProcessor(BlockingQueue<Map<TopicPartition, OffsetAndMetadata>> commitQueue) {
            this.commitQueue = commitQueue;
        }
    
        @Override
        public void run() {
            while(!Thread.interrupted()){
                ConsumerRecord<String, String> record = null;
                try {
                    record = queue.poll(100, TimeUnit.MICROSECONDS);
                    if (record != null) {
                        process(record);
                        //完成任务数加1
                        this.completeTask++;
                        //保存上一条处理记录
                        lastUncommittedRecord = record;
                    }
                    //提交偏移给queue中
                    commitTOQueue();
                } catch (InterruptedException e) {
                    //线程被interrupt,直接退出
                    logger.info(Thread.currentThread() + "is interrupted");
                }
    
            }
    
        }
    
        //将当前的消费偏移量放到queue中, 由MsgReceiver进行提交
        private void commitTOQueue() {
            if(lastUncommittedRecord == null){
                return;
            }
            //如果消费了设定的条数, 比如又消费了commitLength消息
            boolean arrivedCommitLength = this.completeTask % commitLength == 0;
            //获取当前时间, 看是否已经到了需要提交的时间
            LocalDateTime currentTime = LocalDateTime.now();
            boolean arrivedTime = currentTime.isAfter(lastTime.plus(commitTime));
    
            if(arrivedCommitLength || arrivedTime){
                lastTime = currentTime;
                long offset = lastUncommittedRecord.offset();
                int partition = lastUncommittedRecord.partition();
                String topic = lastUncommittedRecord.topic();
                TopicPartition topicPartition = new TopicPartition(topic, partition);
                logger.info("partition: " + topicPartition + " submit offset: " + (offset + 1L) + " to consumer task");
                Map<TopicPartition, OffsetAndMetadata> map = Collections.singletonMap(topicPartition, new OffsetAndMetadata(offset + 1L));
                commitQueue.add(map);
                //置空
                lastUncommittedRecord = null;
            }
        }
    
        //consumer线程向处理线程的队列中添加record
        public void addRecordToQueue(ConsumerRecord<String, String> record) {
            try {
                queue.put(record);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    
        private void process(ConsumerRecord<String, String> record) {
            //具体业务逻辑
            //System.out.println(record);
        }
    }
    

    改进

    1. 对处理程序RecordProcessor进行抽象,抽象出BasePropessor父类。以后业务需求需要不同的处理程序RecordProcessor就可以灵活改变了。
    2. 反射来构建RecordProcessor??在配置文件配置具体要new的RecordProcessor类路径,然后在创建MsgReceiver的时候传递进去。

    参考

    1. Kafka Consumer多线程实例 : 如这篇文章所说的维护了多个worker来做具体业务处理,这篇文章用的是ThreadPoolExecutor线程池。
  • 相关阅读:
    Devexpress treeList
    sql rowversion
    2015年8月9日 开始 devsxpress 学习
    定时执行任务
    Dexpress 中 grid的使用
    新版 itextsharp pdf code
    jquery ui 中的插件开发
    Centos7下git服务器及gogs部署
    JAVA(TOMCAT)远程调试
    分布式文件系统笔记(慢慢补充)
  • 原文地址:https://www.cnblogs.com/stillcoolme/p/9781064.html
Copyright © 2011-2022 走看看