zoukankan      html  css  js  c++  java
  • 【洛谷P3312】数表

    题目

    题目链接:https://www.luogu.com.cn/problem/P3312
    有一张 \(n\times m\) 的数表,其第 \(i\) 行第 \(j\) 列(\(1\le i\le n\)\(1\le j\le m\))的数值为能同时整除 \(i\)\(j\) 的所有自然数之和。给定 \(a\),计算数表中不大于 \(a\) 的数之和。

    思路

    先不考虑 \(a\) 的限制,那么 \((i,j)\) 的数值即为 \(\gcd(i,j)\) 的因子之和(设为 \(g(i)\))。\(g(i)\) 可以 \(O(n\log n)\) 预处理出。

    \[ans=\sum^{n}_{i=1}g(i)\times \sum^{\min(n,m)}_{d|i}\mu(\frac{i}{d})\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor \]

    \[=\sum^{n}_{i=1}\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor\sum^{\min(n,m)}_{i|d}g(d)\mu(\frac{i}{d}) \]

    当有 \(a\) 的限制时,只有 \(g(x)\leq a\)\(g(x)\) 才可以产生贡献。所以我们将询问按 \(a\) 排序,数字 \(x\)\(g(x)\) 排序,对于一个询问 \(a\)\(g(x)\leq a\) 的所有 \(g(x)\)\(x\) 倍数的贡献加上,然后再询问一段区间的和。
    用树状数组处理即可。然后就是整除分块乱搞了。
    时间复杂度 \(O(Q\sqrt{n}+Q\log^2 n)\)

    代码

    #include <bits/stdc++.h>
    using namespace std;
    typedef unsigned int uint;
    
    const int N=100010;
    int Q,tot,prm[N],mu[N],g[N];
    uint ans[N];
    bool v[N];
    
    struct Query
    {
    	int n,m,a,id;
    }ask[N];
    
    struct node
    {
    	int g,id;
    }a[N];
    
    bool cmp1(Query x,Query y)
    {
    	return x.a<y.a;
    }
    
    bool cmp2(node x,node y)
    {
    	return x.g<y.g;
    }
    
    void findprm(int n)
    {
    	mu[1]=1;
    	for (int i=2;i<=n;i++)
    	{
    		if (!v[i])
    			prm[++tot]=i,mu[i]=-1;
    		for (int j=1;j<=tot;j++)
    		{
    			if (i>n/prm[j]) break;
    			v[prm[j]*i]=1; mu[prm[j]*i]=-mu[i];
    			if (!(i%prm[j]))
    			{
    				mu[i*prm[j]]=0;
    				break;
    			}
    		}
    	}
    }
    
    struct BIT
    {
    	uint c[N];
    	
    	void add(int x,uint v)
    	{
    		for (int i=x;i<N;i+=i&-i)
    			c[i]+=v;
    	}
    	
    	uint query(int x)
    	{
    		uint ans=0;
    		for (int i=x;i;i-=i&-i)
    			ans+=c[i];
    		return ans;
    	}
    }bit;
    
    int main()
    {
    	findprm(N-10);
    	for (int i=1;i<=N-10;i++)
    		for (int j=i;j<=N-10;j+=i)
    			g[j]+=i;
    	for (int i=1;i<=N-10;i++)
    		a[i]=(node){g[i],i};
    	sort(a+1,a+1+N-10,cmp2);
    	scanf("%d",&Q);
    	for (int i=1;i<=Q;i++)
    	{
    		scanf("%d%d%d",&ask[i].n,&ask[i].m,&ask[i].a);
    		ask[i].id=i;
    	}
    	sort(ask+1,ask+1+Q,cmp1);
    	for (int i=1,j=1;i<=Q;i++)
    	{
    		for (;j<=N-10 && a[j].g<=ask[i].a;j++)
    			for (int k=a[j].id;k<=N-10;k+=a[j].id)
    				bit.add(k,1U*mu[k/a[j].id]*a[j].g);
    		int n=ask[i].n,m=ask[i].m;
    		for (int l=1,r;l<=min(n,m);l=r+1)
    		{
    			r=min(n/(n/l),m/(m/l));
    			ans[ask[i].id]+=1U*(n/l)*(m/l)*(bit.query(r)-bit.query(l-1));
    		}
    	}
    	for (int i=1;i<=Q;i++)
    		printf("%d\n",(int)(2147483647U&ans[i]));
    	return 0;
    }
    
  • 相关阅读:
    FineBI客户画像分析与客户价值模型快速入门
    大数据分析免费学习教程
    Xshell连接不上Ubuntu解决方式
    Jenkins时区设置为北京时间
    ASP.NET Core 与支付宝开发文档
    .NET Core 从 Github到 Nuget 持续集成、部署
    使用 dotnet cli 命令上传 nuget 程序包
    发布你的程序包到Nuget
    ASP.NET Core 判断请求是否为Ajax请求
    ASP.NET Core 如何在运行Docker容器时指定容器外部端口(docker compose)
  • 原文地址:https://www.cnblogs.com/stoorz/p/13736808.html
Copyright © 2011-2022 走看看