zoukankan      html  css  js  c++  java
  • 【洛谷P3312】数表

    题目

    题目链接:https://www.luogu.com.cn/problem/P3312
    有一张 \(n\times m\) 的数表,其第 \(i\) 行第 \(j\) 列(\(1\le i\le n\)\(1\le j\le m\))的数值为能同时整除 \(i\)\(j\) 的所有自然数之和。给定 \(a\),计算数表中不大于 \(a\) 的数之和。

    思路

    先不考虑 \(a\) 的限制,那么 \((i,j)\) 的数值即为 \(\gcd(i,j)\) 的因子之和(设为 \(g(i)\))。\(g(i)\) 可以 \(O(n\log n)\) 预处理出。

    \[ans=\sum^{n}_{i=1}g(i)\times \sum^{\min(n,m)}_{d|i}\mu(\frac{i}{d})\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor \]

    \[=\sum^{n}_{i=1}\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor\sum^{\min(n,m)}_{i|d}g(d)\mu(\frac{i}{d}) \]

    当有 \(a\) 的限制时,只有 \(g(x)\leq a\)\(g(x)\) 才可以产生贡献。所以我们将询问按 \(a\) 排序,数字 \(x\)\(g(x)\) 排序,对于一个询问 \(a\)\(g(x)\leq a\) 的所有 \(g(x)\)\(x\) 倍数的贡献加上,然后再询问一段区间的和。
    用树状数组处理即可。然后就是整除分块乱搞了。
    时间复杂度 \(O(Q\sqrt{n}+Q\log^2 n)\)

    代码

    #include <bits/stdc++.h>
    using namespace std;
    typedef unsigned int uint;
    
    const int N=100010;
    int Q,tot,prm[N],mu[N],g[N];
    uint ans[N];
    bool v[N];
    
    struct Query
    {
    	int n,m,a,id;
    }ask[N];
    
    struct node
    {
    	int g,id;
    }a[N];
    
    bool cmp1(Query x,Query y)
    {
    	return x.a<y.a;
    }
    
    bool cmp2(node x,node y)
    {
    	return x.g<y.g;
    }
    
    void findprm(int n)
    {
    	mu[1]=1;
    	for (int i=2;i<=n;i++)
    	{
    		if (!v[i])
    			prm[++tot]=i,mu[i]=-1;
    		for (int j=1;j<=tot;j++)
    		{
    			if (i>n/prm[j]) break;
    			v[prm[j]*i]=1; mu[prm[j]*i]=-mu[i];
    			if (!(i%prm[j]))
    			{
    				mu[i*prm[j]]=0;
    				break;
    			}
    		}
    	}
    }
    
    struct BIT
    {
    	uint c[N];
    	
    	void add(int x,uint v)
    	{
    		for (int i=x;i<N;i+=i&-i)
    			c[i]+=v;
    	}
    	
    	uint query(int x)
    	{
    		uint ans=0;
    		for (int i=x;i;i-=i&-i)
    			ans+=c[i];
    		return ans;
    	}
    }bit;
    
    int main()
    {
    	findprm(N-10);
    	for (int i=1;i<=N-10;i++)
    		for (int j=i;j<=N-10;j+=i)
    			g[j]+=i;
    	for (int i=1;i<=N-10;i++)
    		a[i]=(node){g[i],i};
    	sort(a+1,a+1+N-10,cmp2);
    	scanf("%d",&Q);
    	for (int i=1;i<=Q;i++)
    	{
    		scanf("%d%d%d",&ask[i].n,&ask[i].m,&ask[i].a);
    		ask[i].id=i;
    	}
    	sort(ask+1,ask+1+Q,cmp1);
    	for (int i=1,j=1;i<=Q;i++)
    	{
    		for (;j<=N-10 && a[j].g<=ask[i].a;j++)
    			for (int k=a[j].id;k<=N-10;k+=a[j].id)
    				bit.add(k,1U*mu[k/a[j].id]*a[j].g);
    		int n=ask[i].n,m=ask[i].m;
    		for (int l=1,r;l<=min(n,m);l=r+1)
    		{
    			r=min(n/(n/l),m/(m/l));
    			ans[ask[i].id]+=1U*(n/l)*(m/l)*(bit.query(r)-bit.query(l-1));
    		}
    	}
    	for (int i=1;i<=Q;i++)
    		printf("%d\n",(int)(2147483647U&ans[i]));
    	return 0;
    }
    
  • 相关阅读:
    浅拷贝与深拷贝
    Hibernate入门(1)-第一个Hibernate程序
    Spring入门(10)-Spring JDBC
    【Java,IDEA】创建自己的代码模版快速生成
    【Java,IDEA】使用IDEA自动生成序列化ID
    【Project】原生JavaWeb工程 02 登陆业务的流程(第一阶段样例)
    【AJAX】Asynchronous JavaScript And XML (非同步的JS & XML)
    【JS】06 语法补充
    【JS】05 DOM 文档对象模型 P2 元素的CRUD、Dom集合对象
    【JS】04 DOM 文档对象模型 P1 查找元素、改变内容、绑定事件
  • 原文地址:https://www.cnblogs.com/stoorz/p/13736808.html
Copyright © 2011-2022 走看看