zoukankan      html  css  js  c++  java
  • 【洛谷P3247】最小公倍数

    题目

    题目链接:https://www.luogu.com.cn/problem/P3247
    给定一张 (N) 个顶点 (M) 条边的无向图(顶点编号为 (1,2,...,n)),每条边上带有权值。所有权值都可以分解成 (2^a imes 3^b) 的形式。
    现在有 (q) 个询问,每次询问给定四个参数 (u,v,a,b),请你求出是否存在一条顶点 (u)(v) 之间的路径,使得路径依次经过的边上的权值的最小公倍数为 (2^a imes 3^b)
    注意:路径可以不是简单路径。

    思路

    问题等价于 (u)(v) 所在连通块内是否存在一张子连通图满足连接 (u)(v)(max(a)=a,max(b)=b)
    将边和询问均按 (a) 从小到大排序,然后给边分块。定义第 (j) 个询问“属于”第 (i) 个块当且仅当第 (j) 的询问的 (j) 大于等于第 (i-1) 个块最后一条边的 (a) 且小于第 (i) 个块最后一条边的 (a)
    对于第 (i) 个块,我们可以找出“属于”它的询问 ([l,r]),然后将 ([l,r]) 按照 (b) 排序,将前 (i-1) 个块所有边也将 (b) 排序。
    此时显然对于 ([l,r]) 中任意一个询问,它的 (a) 均不小于前 (i-1) 个块的 (a),那么此时只有 (b) 的限制了。因为按照 (b) 排序了,所以可以双指针扫描,找到对于第 (kin [l,r]) 个询问最后一个 (b) 不超过它的边,将这些边用不路径压缩,要按秩合并并查集维护每一个连通块的 (max(a))(max(b))
    对于询问 (k) “属于”的块 (i),我们直接枚举其中的所有边,如果满足这条边的两个权值分别不超过询问的两个权值,那么就加进并查集。注意一个询问结束后需要复原它所属块的贡献。
    时间复杂度 (O(msqrt{n}log n))

    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N=100010,M=320;
    int n,m,Q,T,L[M],R[M],father[N],dep[N],maxa[N],maxb[N],cpy[N][4];
    bool ans[N];
    queue<int> clr;
    
    struct edge
    {
    	int u,v,a,b,id;
    }e[N],ask[N];
    
    bool cmp1(edge x,edge y)
    {
    	return x.a<y.a;
    }
    
    bool cmp2(edge x,edge y)
    {
    	return x.b<y.b;
    }
    
    int find(int x)
    {
    	return x==father[x]?x:find(father[x]);
    }
    
    void prework()
    {
    	for (int i=1;i<=n;i++)
    	{
    		father[i]=i; dep[i]=1;
    		maxa[i]=maxb[i]=-1;
    	}
    }
    
    int main()
    {
    	scanf("%d%d",&n,&m);
    	for (int i=1;i<=m;i++)
    		scanf("%d%d%d%d",&e[i].u,&e[i].v,&e[i].a,&e[i].b);
    	e[++m]=(edge){0,0,(int)2e9,(int)2e9,0};
    	scanf("%d",&Q);
    	for (int i=1;i<=Q;i++)
    	{
    		scanf("%d%d%d%d",&ask[i].u,&ask[i].v,&ask[i].a,&ask[i].b);
    		ask[i].id=i;
    	}
    	T=sqrt(m+log2(n))+1;
    	for (int i=1;i<=T;i++)
    		L[i]=R[i-1]+1,R[i]=min(m,i*T);
    	sort(e+1,e+1+m,cmp1);
    	sort(ask+1,ask+1+Q,cmp1);
    	memset(cpy,-1,sizeof(cpy));
    	for (int i=1,r=0,l=1;i<=T;i++)
    	{
    		prework();
    		while (r<Q && ask[r+1].a<e[R[i]].a) r++;
    		sort(e+1,e+1+R[i-1],cmp2);
    		sort(ask+l,ask+1+r,cmp2);
    		for (int k=1;l<=r;l++)
    		{
    			for (;k<=R[i-1] && e[k].b<=ask[l].b;k++)
    			{
    				int x=find(e[k].u),y=find(e[k].v);
    				if (x==y)
    				{
    					maxa[x]=max(maxa[x],e[k].a);
    					maxb[x]=max(maxb[x],e[k].b);
    					continue;
    				}
    				if (dep[x]<dep[y])
    				{
    					father[x]=y; dep[y]=max(dep[y],dep[x]+1);
    					maxa[y]=max(e[k].a,max(maxa[x],maxa[y]));
    					maxb[y]=max(e[k].b,max(maxb[x],maxb[y]));
    				}
    				else
    				{
    					father[y]=x; dep[x]=max(dep[x],dep[y]+1);
    					maxa[x]=max(e[k].a,max(maxa[x],maxa[y]));
    					maxb[x]=max(e[k].b,max(maxb[x],maxb[y]));
    				}
    			}
    			for (int j=L[i];j<=R[i];j++)
    				if (e[j].a<=ask[l].a && e[j].b<=ask[l].b)
    				{
    					int x=find(e[j].u),y=find(e[j].v);
    					if (cpy[x][0]==-1)
    					{
    						cpy[x][0]=father[x]; cpy[x][1]=dep[x];
    						cpy[x][2]=maxa[x]; cpy[x][3]=maxb[x];
    						clr.push(x);
    					}
    					if (cpy[y][0]==-1)
    					{
    						cpy[y][0]=father[y]; cpy[y][1]=dep[y];
    						cpy[y][2]=maxa[y]; cpy[y][3]=maxb[y];
    						clr.push(y);
    					}
    					if (x==y)
    					{
    						maxa[x]=max(maxa[x],e[j].a);
    						maxb[x]=max(maxb[x],e[j].b);
    						continue;
    					}
    					if (dep[x]<dep[y])
    					{
    						father[x]=y; dep[y]=max(dep[y],dep[x]+1);
    						maxa[y]=max(e[j].a,max(maxa[x],maxa[y]));
    						maxb[y]=max(e[j].b,max(maxb[x],maxb[y]));
    					}
    					else
    					{
    						father[y]=x; dep[x]=max(dep[x],dep[y]+1);
    						maxa[x]=max(e[j].a,max(maxa[x],maxa[y]));
    						maxb[x]=max(e[j].b,max(maxb[x],maxb[y]));
    					}
    				}
    			int x=find(ask[l].u),y=find(ask[l].v);
    			if (x==y && maxa[x]==ask[l].a && maxb[x]==ask[l].b)
    				ans[ask[l].id]=1;
    			while (clr.size())
    			{
    				int x=clr.front(); clr.pop();
    				father[x]=cpy[x][0]; dep[x]=cpy[x][1];
    				maxa[x]=cpy[x][2]; maxb[x]=cpy[x][3];
    				cpy[x][0]=cpy[x][1]=cpy[x][2]=cpy[x][3]=-1;
    			}
    		}
    	}
    	for (int i=1;i<=Q;i++)
    		if (ans[i]) printf("Yes
    ");
    			else printf("No
    ");
    	return 0;
    }
    
  • 相关阅读:
    ubuntu下Nodic开发环境搭建
    usb_modeswitch移植
    STM32F4编程手册学习2_内存模型
    STM32F4 编程手册学习1_编程模型
    ARM架构中的程序执行与调用
    锲形文字 数字
    疑问
    lisp 题目
    面试官在面试时让我去破解一个软件,我成功了
    php CI ip限制
  • 原文地址:https://www.cnblogs.com/stoorz/p/14074787.html
Copyright © 2011-2022 走看看