OpenCV常用图像拼接方法将分为四个部分与大家共享,这里是第三种方法,欢迎关注后续。
OpenCV的常用图像拼接方法(三):基于特征匹配的图像拼接,本次介绍SIFT特征匹配拼接方法,OpenCV版本为4.4.0。特点和适用范围:图像有足够重合相同特征区域,且待拼接图像之间无明显尺度变换和畸变。
优点:适应部分倾斜变化情况。缺点:需要有足够的相同特征区域进行匹配,速度较慢,拼接较大图片容易崩溃。
如下是待拼接的两张图片:
特征匹配图:
拼接结果图:
拼接缝处理后(拼接处过渡更自然):
核心代码:
/********************直接图像拼接函数*************************/ bool ImageOverlap0(Mat &img1, Mat &img2) { Mat g1(img1, Rect(0, 0, img1.cols, img1.rows)); // init roi Mat g2(img2, Rect(0, 0, img2.cols, img2.rows)); cvtColor(g1, g1, COLOR_BGR2GRAY); cvtColor(g2, g2, COLOR_BGR2GRAY); vector<cv::KeyPoint> keypoints_roi, keypoints_img; /* keypoints found using SIFT */ Mat descriptor_roi, descriptor_img; /* Descriptors for SIFT */ FlannBasedMatcher matcher; /* FLANN based matcher to match keypoints */ vector<cv::DMatch> matches, good_matches; cv::Ptr<cv::SIFT> sift = cv::SIFT::create(); int i, dist = 80; sift->detectAndCompute(g1, cv::Mat(), keypoints_roi, descriptor_roi); /* get keypoints of ROI image */ sift->detectAndCompute(g2, cv::Mat(), keypoints_img, descriptor_img); /* get keypoints of the image */ matcher.match(descriptor_roi, descriptor_img, matches); //实现描述符之间的匹配 double max_dist = 0; double min_dist = 5000; //-- Quick calculation of max and min distances between keypoints for (int i = 0; i < descriptor_roi.rows; i++) { double dist = matches[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } // 特征点筛选 for (i = 0; i < descriptor_roi.rows; i++) { if (matches[i].distance < 3 * min_dist) { good_matches.push_back(matches[i]); } } printf("%ld no. of matched keypoints in right image ", good_matches.size()); /* Draw matched keypoints */ Mat img_matches; //绘制匹配 drawMatches(img1, keypoints_roi, img2, keypoints_img, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("matches", img_matches); vector<Point2f> keypoints1, keypoints2; for (i = 0; i < good_matches.size(); i++) { keypoints1.push_back(keypoints_img[good_matches[i].trainIdx].pt); keypoints2.push_back(keypoints_roi[good_matches[i].queryIdx].pt); } //计算单应矩阵(仿射变换矩阵) Mat H = findHomography(keypoints1, keypoints2, RANSAC); Mat H2 = findHomography(keypoints2, keypoints1, RANSAC); Mat stitchedImage; //定义仿射变换后的图像(也是拼接结果图像) Mat stitchedImage2; //定义仿射变换后的图像(也是拼接结果图像) int mRows = img2.rows; if (img1.rows > img2.rows) { mRows = img1.rows; } int count = 0; for (int i = 0; i < keypoints2.size(); i++) { if (keypoints2[i].x >= img2.cols / 2) count++; } //判断匹配点位置来决定图片是左还是右 if (count / float(keypoints2.size()) >= 0.5) //待拼接img2图像在右边 { cout << "img1 should be left" << endl; vector<Point2f>corners(4); vector<Point2f>corners2(4); corners[0] = Point(0, 0); corners[1] = Point(0, img2.rows); corners[2] = Point(img2.cols, img2.rows); corners[3] = Point(img2.cols, 0); stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3); warpPerspective(img2, stitchedImage, H, Size(img2.cols + img1.cols, mRows)); perspectiveTransform(corners, corners2, H); /* circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8); circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8); circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8); circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */ cout << corners2[0].x << ", " << corners2[0].y << endl; cout << corners2[1].x << ", " << corners2[1].y << endl; imshow("temp", stitchedImage); //imwrite("temp.jpg", stitchedImage); Mat half(stitchedImage, Rect(0, 0, img1.cols, img1.rows)); img1.copyTo(half); imshow("result", stitchedImage); } else //待拼接图像img2在左边 { cout << "img2 should be left" << endl; stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3); warpPerspective(img1, stitchedImage, H2, Size(img1.cols + img2.cols, mRows)); imshow("temp", stitchedImage); //计算仿射变换后的四个端点 vector<Point2f>corners(4); vector<Point2f>corners2(4); corners[0] = Point(0, 0); corners[1] = Point(0, img1.rows); corners[2] = Point(img1.cols, img1.rows); corners[3] = Point(img1.cols, 0); perspectiveTransform(corners, corners2, H2); //仿射变换对应端点 /* circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8); circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8); circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8); circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */ cout << corners2[0].x << ", " << corners2[0].y << endl; cout << corners2[1].x << ", " << corners2[1].y << endl; Mat half(stitchedImage, Rect(0, 0, img2.cols, img2.rows)); img2.copyTo(half); imshow("result", stitchedImage); } imwrite("result.bmp", stitchedImage); return true; }
拼接缝优化代码与完整源码素材将发布在知识星球主题中。