zoukankan      html  css  js  c++  java
  • OpenCV常用图像拼接方法(三):基于特征匹配拼接

     OpenCV常用图像拼接方法将分为四个部分与大家共享,这里是第三种方法,欢迎关注后续。

        OpenCV的常用图像拼接方法(三):基于特征匹配的图像拼接,本次介绍SIFT特征匹配拼接方法,OpenCV版本为4.4.0。特点和适用范围:图像有足够重合相同特征区域,且待拼接图像之间无明显尺度变换和畸变。

    优点:适应部分倾斜变化情况。缺点:需要有足够的相同特征区域进行匹配,速度较慢,拼接较大图片容易崩溃。

        如下是待拼接的两张图片:

     

      特征匹配图:

     拼接结果图:

     拼接缝处理后(拼接处过渡更自然):

     核心代码:

    /********************直接图像拼接函数*************************/
    bool ImageOverlap0(Mat &img1, Mat &img2)
    {
      Mat g1(img1, Rect(0, 0, img1.cols, img1.rows));  // init roi 
      Mat g2(img2, Rect(0, 0, img2.cols, img2.rows));
    
      cvtColor(g1, g1, COLOR_BGR2GRAY);
      cvtColor(g2, g2, COLOR_BGR2GRAY);
    
      vector<cv::KeyPoint> keypoints_roi, keypoints_img;  /* keypoints found using SIFT */
      Mat descriptor_roi, descriptor_img;                           /* Descriptors for SIFT */
      FlannBasedMatcher matcher;                                   /* FLANN based matcher to match keypoints */
    
      vector<cv::DMatch> matches, good_matches;
      cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
      int i, dist = 80;
    
      sift->detectAndCompute(g1, cv::Mat(), keypoints_roi, descriptor_roi);      /* get keypoints of ROI image */
      sift->detectAndCompute(g2, cv::Mat(), keypoints_img, descriptor_img);         /* get keypoints of the image */
      matcher.match(descriptor_roi, descriptor_img, matches);  //实现描述符之间的匹配
    
      double max_dist = 0; double min_dist = 5000;
      //-- Quick calculation of max and min distances between keypoints 
      for (int i = 0; i < descriptor_roi.rows; i++)
      {
        double dist = matches[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
      }
      // 特征点筛选
      for (i = 0; i < descriptor_roi.rows; i++)
      {
        if (matches[i].distance < 3 * min_dist)
        {
          good_matches.push_back(matches[i]);
        }
      }
    
      printf("%ld no. of matched keypoints in right image
    ", good_matches.size());
      /* Draw matched keypoints */
    
      Mat img_matches;
      //绘制匹配
      drawMatches(img1, keypoints_roi, img2, keypoints_img,
        good_matches, img_matches, Scalar::all(-1),
        Scalar::all(-1), vector<char>(),
        DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
      imshow("matches", img_matches);
    
      vector<Point2f> keypoints1, keypoints2;
      for (i = 0; i < good_matches.size(); i++)
      {
        keypoints1.push_back(keypoints_img[good_matches[i].trainIdx].pt);
        keypoints2.push_back(keypoints_roi[good_matches[i].queryIdx].pt);
      }
      //计算单应矩阵(仿射变换矩阵) 
      Mat H = findHomography(keypoints1, keypoints2, RANSAC);
      Mat H2 = findHomography(keypoints2, keypoints1, RANSAC);
    
    
      Mat stitchedImage;  //定义仿射变换后的图像(也是拼接结果图像)
      Mat stitchedImage2;  //定义仿射变换后的图像(也是拼接结果图像)
      int mRows = img2.rows;
      if (img1.rows > img2.rows)
      {
        mRows = img1.rows;
      }
    
      int count = 0;
      for (int i = 0; i < keypoints2.size(); i++)
      {
        if (keypoints2[i].x >= img2.cols / 2)
          count++;
      }
      //判断匹配点位置来决定图片是左还是右
      if (count / float(keypoints2.size()) >= 0.5)  //待拼接img2图像在右边
      {
        cout << "img1 should be left" << endl;
        vector<Point2f>corners(4);
        vector<Point2f>corners2(4);
        corners[0] = Point(0, 0);
        corners[1] = Point(0, img2.rows);
        corners[2] = Point(img2.cols, img2.rows);
        corners[3] = Point(img2.cols, 0);
        stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
        warpPerspective(img2, stitchedImage, H, Size(img2.cols + img1.cols, mRows));
    
        perspectiveTransform(corners, corners2, H);
        /*
        circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
        circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
        circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
        circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
        cout << corners2[0].x << ", " << corners2[0].y << endl;
        cout << corners2[1].x << ", " << corners2[1].y << endl;
        imshow("temp", stitchedImage);
        //imwrite("temp.jpg", stitchedImage);
    
        Mat half(stitchedImage, Rect(0, 0, img1.cols, img1.rows));
        img1.copyTo(half);
        imshow("result", stitchedImage);
      }
      else  //待拼接图像img2在左边
      {
        cout << "img2 should be left" << endl;
        stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
        warpPerspective(img1, stitchedImage, H2, Size(img1.cols + img2.cols, mRows));
        imshow("temp", stitchedImage);
    
        //计算仿射变换后的四个端点
        vector<Point2f>corners(4);
        vector<Point2f>corners2(4);
        corners[0] = Point(0, 0);
        corners[1] = Point(0, img1.rows);
        corners[2] = Point(img1.cols, img1.rows);
        corners[3] = Point(img1.cols, 0);
    
        perspectiveTransform(corners, corners2, H2);  //仿射变换对应端点
        /*
        circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
        circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
        circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
        circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
        cout << corners2[0].x << ", " << corners2[0].y << endl;
        cout << corners2[1].x << ", " << corners2[1].y << endl;
    
        Mat half(stitchedImage, Rect(0, 0, img2.cols, img2.rows));
        img2.copyTo(half);
        imshow("result", stitchedImage);
    
      }
      imwrite("result.bmp", stitchedImage);
      return true;
    }
    

      拼接缝优化代码与完整源码素材将发布在知识星球主题中。  

  • 相关阅读:
    WPF笔记(1)
    Java笔记(3)
    Java笔记(2)
    Java笔记(1)
    PHP学习笔记(5)
    PHP学习笔记(4)
    PHP学习笔记(3)
    PHP学习笔记(2)
    PHP学习笔记(1)
    WKWebView 支持https请求
  • 原文地址:https://www.cnblogs.com/stq054188/p/13493334.html
Copyright © 2011-2022 走看看