★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10576111.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
An undirected, connected tree with N
nodes labelled 0...N-1
and N-1
edges
are given.
The i
th edge connects nodes edges[i][0]
and edges[i][1]
together.
Return a list ans
, where ans[i]
is the sum of the distances between node i
and all other nodes.
Example 1:
Input: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]] Output: [8,12,6,10,10,10] Explanation: Here is a diagram of the given tree: 0 / 1 2 /| 3 4 5 We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.
Note: 1 <= N <= 10000
给定一个无向、连通的树。树中有 N
个标记为 0...N-1
的节点以及 N-1
条边 。
第 i
条边连接节点 edges[i][0]
和 edges[i][1]
。
返回一个表示节点 i
与其他所有节点距离之和的列表 ans
。
示例 1:
输入: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]] 输出: [8,12,6,10,10,10] 解释: 如下为给定的树的示意图: 0 / 1 2 /| 3 4 5 我们可以计算出 dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) 也就是 1 + 1 + 2 + 2 + 2 = 8。 因此,answer[0] = 8,以此类推。
说明: 1 <= N <= 10000
Runtime: 364 ms
Memory Usage: 20.3 MB
1 class Solution { 2 var res:[Int] = [Int]() 3 var count:[Int] = [Int]() 4 var tree:[Set<Int>] = [Set<Int>]() 5 func sumOfDistancesInTree(_ N: Int, _ edges: [[Int]]) -> [Int] { 6 res = [Int](repeating:0,count:N) 7 count = [Int](repeating:0,count:N) 8 tree = [Set<Int>](repeating:Set<Int>(),count:N) 9 for e in edges 10 { 11 tree[e[0]].insert(e[1]) 12 tree[e[1]].insert(e[0]) 13 } 14 dfs(0, -1) 15 dfs2(0, -1) 16 return res 17 } 18 19 func dfs(_ root:Int,_ pre:Int) 20 { 21 for i in tree[root] 22 { 23 if i == pre {continue} 24 dfs(i, root) 25 count[root] += count[i] 26 res[root] += res[i] + count[i] 27 } 28 count[root] += 1 29 } 30 31 func dfs2(_ root:Int,_ pre:Int) 32 { 33 for i in tree[root] 34 { 35 if i == pre {continue} 36 res[i] = res[root] - count[i] + count.count - count[i] 37 dfs2(i, root) 38 } 39 } 40 }