zoukankan      html  css  js  c++  java
  • java实现线段树

    介绍

    线段树(又名区间树)也是一种二叉树,每个节点的值等于左右孩子节点值的和,线段树
    示例图如下

    以求和为例,根节点表示区间0-5的和,左孩子表示区间0-2的和,右孩子表示区间3-5的和,依次类推。

    代码实现

    /**
     * 使用数组实现线段树
     */
    public class SegmentTree<E> {
    
      private Node[] data;
      private int size;
    
      private Merger<E> merger;
    
      public SegmentTree(E[] source, Merger<E> merger) {
        this.merger = merger;
        this.size = source.length;
        this.data = new Node[size * 4];
        buildTree(0, source, 0, size - 1);
      }
    
      public E search(int queryLeft, int queryRight) {
        if (queryLeft < 0 || queryLeft > size || queryRight < 0 || queryRight > size
            || queryLeft > queryRight) {
          throw new IllegalArgumentException("index is illegal");
        }
        return search(0, queryLeft, queryRight);
      }
    
      /**
       * 查询区间queryLeft-queryRight的值
       */
      private E search(int treeIndex, int queryLeft, int queryRight) {
        Node treeNode = data[treeIndex];
        int left = treeNode.left;
        int right = treeNode.right;
        if (left == queryLeft && right == queryRight) {
          return elementData(treeIndex);
        }
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        int middle = left + ((right - left) >> 1);
        if (queryLeft > middle) {
          return search(rightTreeIndex, queryLeft, queryRight);
        } else if (queryRight <= middle) {
          return search(leftTreeIndex, queryLeft, queryRight);
        }
        E leftEle = search(leftTreeIndex, queryLeft, middle);
        E rightEle = search(rightTreeIndex, middle + 1, queryRight);
        return merger.merge(leftEle, rightEle);
      }
    
      public void update(int index, E e) {
        update(0, index, e);
      }
    
      /**
       * 更新索引为index的值为e
       */
      private void update(int treeIndex, int index, E e) {
        Node treeNode = data[treeIndex];
        int left = treeNode.left;
        int right = treeNode.right;
        if (left == right) {
          treeNode.data = e;
          return;
        }
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        int middle = left + ((right - left) >> 1);
        if (index > middle) {
          update(rightTreeIndex, index, e);
        } else {
          update(leftTreeIndex, index, e);
        }
        treeNode.data = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));
      }
    
      private void buildTree(int treeIndex, E[] source, int left, int right) {
        if (left == right) {
          data[treeIndex] = new Node<>(source[left], left, right);
          return;
        }
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        int middle = left + ((right - left) >> 1);
        buildTree(leftTreeIndex, source, left, middle);
        buildTree(rightTreeIndex, source, middle + 1, right);
        E treeData = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));
        data[treeIndex] = new Node<>(treeData, left, right);
      }
    
      @Override
      public String toString() {
        return Arrays.toString(data);
      }
    
      private E elementData(int index) {
        return (E) data[index].data;
      }
    
      private int leftChild(int index) {
        return index * 2 + 1;
      }
    
      private int rightChild(int index) {
        return index * 2 + 2;
      }
    
      private static class Node<E> {
    
        E data;
        int left;
        int right;
    
        Node(E data, int left, int right) {
          this.data = data;
          this.left = left;
          this.right = right;
        }
    
        @Override
        public String toString() {
          return String.valueOf(data);
        }
      }
    
      public interface Merger<E> {
    
        E merge(E e1, E e2);
      }
    }
    

    我们以LeetCode上的一个问题来分析线段树的构建,查询和更新,LeetCode307
    问题如下:
    给定一个整数数组,查询索引区间[i,j]的元素的总和。

    线段树构建

    private void buildTree(int treeIndex, E[] source, int left, int right) {
        if (left == right) {
          data[treeIndex] = new Node<>(source[left], left, right);
          return;
        }
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        int middle = left + ((right - left) >> 1);
        buildTree(leftTreeIndex, source, left, middle);
        buildTree(rightTreeIndex, source, middle + 1, right);
        E treeData = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));
        data[treeIndex] = new Node<>(treeData, left, right);
      }
    

    测试代码

    public class Main {
    
      public static void main(String[] args) {
        Integer[] nums = {-2, 0, 3, -5, 2, -1};
        SegmentTree<Integer> segmentTree = new SegmentTree<>(nums, Integer::sum);
        System.out.println(segmentTree);
      }
    
    }
    

    最后构造出的线段树如下,前面为元素值,括号中为包含的区间。

    递归构造过程为

    • 当左指针和右指针相等时,表示为叶子节点
    • 将左孩子和右孩子值相加,构造当前节点,依次类推

    区间查询

      /**
       * 查询区间queryLeft-queryRight的值
       */
      private E search(int treeIndex, int queryLeft, int queryRight) {
        Node treeNode = data[treeIndex];
        int left = treeNode.left;
        int right = treeNode.right;
        if (left == queryLeft && right == queryRight) {
          return elementData(treeIndex);
        }
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        int middle = left + ((right - left) >> 1);
        if (queryLeft > middle) {
          return search(rightTreeIndex, queryLeft, queryRight);
        } else if (queryRight <= middle) {
          return search(leftTreeIndex, queryLeft, queryRight);
        }
        E leftEle = search(leftTreeIndex, queryLeft, middle);
        E rightEle = search(rightTreeIndex, middle + 1, queryRight);
        return merger.merge(leftEle, rightEle);
      }
    

    查询区间2-5的和

    public class Main {
    
      public static void main(String[] args) {
        Integer[] nums = {-2, 0, 3, -5, 2, -1};
        SegmentTree<Integer> segmentTree = new SegmentTree<>(nums, Integer::sum);
        System.out.println(segmentTree);
        System.out.println(segmentTree.search(2, 5)); // -1
      }
    
    }
    

    查询过程为

    • 待查询的区间和当前节点的区间相等,返回当前节点值
    • 待查询左区间大于中间区间值,查询右孩子
    • 待查询右区间小于中间区间值,查询左孩子
    • 待查询左区间在左孩子,右区间在右孩子,两边查询结果相加

    更新

      /**
       * 更新索引为index的值为e
       */
      private void update(int treeIndex, int index, E e) {
        Node treeNode = data[treeIndex];
        int left = treeNode.left;
        int right = treeNode.right;
        if (left == right) {
          treeNode.data = e;
          return;
        }
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);
        int middle = left + ((right - left) >> 1);
        if (index > middle) {
          update(rightTreeIndex, index, e);
        } else {
          update(leftTreeIndex, index, e);
        }
        treeNode.data = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));
      }
    

    更新只影响元素值,不影响元素区间。
    更新其实和构建的逻辑类似,找到待更新的实际索引,依次更新父节点的值。

    总结

    线段树可以很好地处理区间问题,如区间求和,求最大最小值等。

  • 相关阅读:
    能大大提升工作效率和时间效率的9个重要习惯
    hibernate的校验
    8. semahpore原理
    chklist
    android textview 自动换行 整齐排版
    fiddler接口测试,js代码修改日志展示(埋点用)
    Python模块之 tqdm进度条
    Python抓取网页到本地
    Python模块之 clint 进度条
    python windows下pip安装错误whl文件安装错误
  • 原文地址:https://www.cnblogs.com/strongmore/p/14223224.html
Copyright © 2011-2022 走看看