zoukankan      html  css  js  c++  java
  • MathAndProbability(数学与概率)

    1.有个篮球框,下面两种玩法可任选一种。玩法1:一次出手机会,投篮命中得分。玩法2:三次出手机会,必须投中两次。如果p是某次投篮命中的概率,则p的值为多少时,才会选择玩法1或玩法2?

    解法:假设投中概率是p,p1 = p;  p2 = 3 * p * p * (p - 1);  算什么情况下选玩法一:p1 > p2.求得p < 0.5的时候。p > 0.5选第二种。但是p = 0, 1, 0.5两种都是一样的。

    2.三角形的三个顶点上各有一只蚂蚁。如果蚂蚁开始沿着三角形的边爬行,两只或三只蚂蚁撞在一起的概率有多大?假定每只蚂蚁会随机选一个方向,每个方向被选到的几率相等,而且三只蚂蚁的爬行速度相同。

    解法:当其中两只蚂蚁互相朝着对方而行,就会发生碰撞。因此,蚂蚁不发生碰撞的前提是,它们都朝着同一方向爬行(顺时针或逆时针)。

    P(顺时针)=P(逆时针)=(1/2)的三次方=1/8  P(同方向)=1/4   P(碰撞)= 1 - P(同方向)=3/4 

    类似问题:在n个顶点的多边形上有n只蚂蚁,求出这些蚂蚁发生碰撞的概率。

    P(碰撞)= 1 - P(同方向)= 1 - (1/2)的(n-1)次方

    import java.util.*;
    
    public class Ants {
        public double antsCollision(int n) {
            // write code here
            return (1 - Math.pow(0.5, n - 1));
        }
    }
    View Code

    3.给定直角坐标系上的两条线,确定这两条线会不会相交。

    思路:两条线若不平行则必相交。因此,要检查两条线相交与否,只需检查两者的斜率是否相同或是否为同一条直线。

    public class Line {
        static double epsilon = 0.000001;
        static double slope;//斜率
        static double yintercept;//y轴截距
        public Line(double s, double y) {
            slope = s;
            yintercept = y;
        }
        public boolean intersect(Line line2) {
            //两条线斜率不相同或者y轴截距相同一定会相交
            return Math.abs(slope - line2.slope) > epsilon ||
                   Math.abs(yintercept - line2.yintercept) < epsilon;
        }
    }
    View Code

    注意:不要假设斜率和y轴截距就是整数。切记不要用==检查浮点数是否相等,而是应该检查两者差值是否小于某个极小值(如上面代码中的epsilon值)。

    4.编写方法,实现整数的乘法、减法和除法运算。只允许使用加号。

    思路:对于每个子问题,深入思考这些运算的本质,或者如何其他运算表示(加法或已实现的运算)。

    1.减法:a-b=a+(-1)*b。但是不能使用乘号,必须实现一个取反(negate)运算。要对数值+k(-k)取反,只需将-1(+1)连加k次。

    2.乘法。a乘以b就是将a连加b次。要注意如果b为负数,需要将sum值取反,即multiply(a, b)=abs(b)*a*(-1 if b <0)

    3.除法。计算x=a/b中的x。好好利用等式a=xb,将b与它自身连加直至得到a,就能算出x。b与自身连加的次数等于x的值。

    public class AddSubstitution {
        //减法
        //取反操作
        public static int negate(int a) {
            int neg = 0;
            int d = a < 0 ? 1 : -1;
            while (a != 0) {
                neg += d;
                a += d;
            }
            return neg;
        }
        //两数相减相当于对b取反,然后将两数相加
        public static int minus(int a, int b) {
            return a + negate(b);
        }
        //乘法
        //将a连加b次,实现a乘b
        public static int multiply(int a, int b) {
            if (a < b) {
                return multiply(b, a);//若b < a,算法会比较快
            }
            int sum = 0;
            for (int i = abs(b); i > 0; i--) {
                sum +=a;
            }
            if (b < 0) {
                sum = negate(sum);
            }
            return sum;
        }
        //返回绝对值
        public static int abs(int a) {
            if (a < 0) {
                return negate(a);
            } else {
                return a;
            }
        }
        //除法
         public static int divide(int a, int b) {
            if (b > a) {
                return 0;
            }
            int count = 0;
            int a1 = abs(a);
            int b1 = abs(b);
            int sum = b1;
            while (sum <= a1) {
                count++;
                sum += b1;
            }
            if (a > 0 && b < 0 || a < 0 && b > 0) {
                count = negate(count);
            }
            return count;
        }
    }
    View Code

    注意:要小心假设。不要假设所有数都是正数,也不该假设a会比b大。

    5.在二维平面上,有两个正方形,请找出一条直线,能够将这两个正方形对半分。假定正方形的上下两条边与x轴平行。

    6.在二维平面上,有一些点,请找出经过点数最多的那条线。

    7.有些数的素因子只有3、5、7,请设计一个算法,找出其中第k个数。

    解法:《九章算法》chapter eight 丑数I II

    import java.util.ArrayList;
    
    public class getNthNumber {
        public int nthUglyNumber(int n) {
            // Write your code here
            ArrayList<Integer> uglys = new ArrayList<Integer>();
            uglys.add(1);
            int p3 = 0;
            int p5 = 0;
            int p7 = 0;
            for (int i = 1; i < n; i++) {
                int lastNumber = uglys.get(i - 1);
                while (uglys.get(p3) * 3 <= lastNumber) {
                    p3++;
                }
                while (uglys.get(p5) * 5 <= lastNumber) {
                    p5++;
                }
                while (uglys.get(p7) * 7 <= lastNumber) {
                    p7++;
                }
                uglys.add(Math.min(
                    Math.min(uglys.get(p3) * 3, uglys.get(p5) * 5),
                    uglys.get(p7) * 7
                ));
            }
            return uglys.get(n - 1);
        }
    }
    View Code
  • 相关阅读:
    Transformers 简介(下)
    OpenCV-Python 姿态估计 | 五十
    Transformers 简介(上)
    OpenCV-Python 相机校准 | 四十九
    在Keras中可视化LSTM
    分析师和统计学家可以和谐相处吗?
    Array类模板
    C++中 公有继承 私有继承 和保护继承的区别
    文件输入输出
    PTA(浙大数据结构,c语言)
  • 原文地址:https://www.cnblogs.com/struggleli/p/7904896.html
Copyright © 2011-2022 走看看