zoukankan      html  css  js  c++  java
  • SparkStreaming+Kafka

    Kafka

    Kafka是最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目

    Kafka的特性:

    - 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。

    - 可扩展性:kafka集群支持热扩展

    - 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

    - 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

    - 高并发:支持数千个客户端同时读写

    Kafka的使用场景:

    - 日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。

    - 消息系统:解耦和生产者和消费者、缓存消息等。

    - 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。

    - 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。

    - 流式处理:比如spark streaming和storm

    - 事件源

    Delivery Mode : Kafka producer 发送message不用维护message的offsite信息,因为这个时候,offsite就相当于一个自增id,producer就尽管发送message就好了。而且Kafka与AMQ不同,AMQ大都用在处理业务逻辑上,而Kafka大都是日志,所以Kafka的producer一般都是大批量的batch发送message,向这个topic一次性发送一大批message,load balance到一个partition上,一起插进去,offsite作为自增id自己增加就好。但是Consumer端是需要维护这个partition当前消费到哪个message的offsite信息的,这个offsite信息,high level api是维护在Zookeeper上,low level api是自己的程序维护。(Kafka管理界面上只能显示high level api的consumer部分,因为low level api的partition offsite信息是程序自己维护,kafka是不知道的,无法在管理界面上展示 )当使用high level api的时候,先拿message处理,再定时自动commit offsite+1(也可以改成手动), 并且kakfa处理message是没有锁操作的。因此如果处理message失败,此时还没有commit offsite+1,当consumer thread重启后会重复消费这个message。但是作为高吞吐量高并发的实时处理系统,at least once的情况下,至少一次会被处理到,是可以容忍的。如果无法容忍,就得使用low level api来自己程序维护这个offsite信息,那么想什么时候commit offsite+1就自己搞定了。

    Topic & Partition:Topic相当于传统消息系统MQ中的一个队列queue,producer端发送的message必须指定是发送到哪个topic,但是不需要指定topic下的哪个partition,因为kafka会把收到的message进行load balance,均匀的分布在这个topic下的不同的partition上( hash(message) % [broker数量] )。物理上存储上,这个topic会分成一个或多个partition,每个partiton相当于是一个子queue。在物理结构上,每个partition对应一个物理的目录(文件夹),文件夹命名是[topicname]_[partition]_[序号],一个topic可以有无数多的partition,根据业务需求和数据量来设置。在kafka配置文件中可随时更高num.partitions参数来配置更改topic的partition数量,在创建Topic时通过参数指定parittion数量。Topic创建之后通过Kafka提供的工具也可以修改partiton数量。

    一般来说,(1)一个Topic的Partition数量大于等于Broker的数量,可以提高吞吐率。(2)同一个Partition的Replica尽量分散到不同的机器,高可用。

    当add a new partition的时候,partition里面的message不会重新进行分配,原来的partition里面的message数据不会变,新加的这个partition刚开始是空的,随后进入这个topic的message就会重新参与所有partition的load balance

    Partition Replica:每个partition可以在其他的kafka broker节点上存副本,以便某个kafka broker节点宕机不会影响这个kafka集群。存replica副本的方式是按照kafka broker的顺序存。例如有5个kafka broker节点,某个topic有3个partition,每个partition存2个副本,那么partition1存broker1,broker2,partition2存broker2,broker3。。。以此类推(replica副本数目不能大于kafka broker节点的数目,否则报错。这里的replica数其实就是partition的副本总数,其中包括一个leader,其他的就是copy副本)。这样如果某个broker宕机,其实整个kafka内数据依然是完整的。但是,replica副本数越高,系统虽然越稳定,但是回来带资源和性能上的下降;replica副本少的话,也会造成系统丢数据的风险。

    (1)怎样传送消息:producer先把message发送到partition leader,再由leader发送给其他partition follower。(如果让producer发送给每个replica那就太慢了)

    (2)在向Producer发送ACK前需要保证有多少个Replica已经收到该消息:根据ack配的个数而定

    (3)怎样处理某个Replica不工作的情况:如果这个部工作的partition replica不在ack列表中,就是producer在发送消息到partition leader上,partition leader向partition follower发送message没有响应而已,这个不会影响整个系统,也不会有什么问题。如果这个不工作的partition replica在ack列表中的话,producer发送的message的时候会等待这个不工作的partition replca写message成功,但是会等到time out,然后返回失败因为某个ack列表中的partition replica没有响应,此时kafka会自动的把这个部工作的partition replica从ack列表中移除,以后的producer发送message的时候就不会有这个ack列表下的这个部工作的partition replica了。

    (4)怎样处理Failed Replica恢复回来的情况:如果这个partition replica之前不在ack列表中,那么启动后重新受Zookeeper管理即可,之后producer发送message的时候,partition leader会继续发送message到这个partition follower上。如果这个partition replica之前在ack列表中,此时重启后,需要把这个partition replica再手动加到ack列表中。(ack列表是手动添加的,出现某个部工作的partition replica的时候自动从ack列表中移除的)

    Partition leader与follower:partition也有leader和follower之分。leader是主partition,producer写kafka的时候先写partition leader,再由partition leader push给其他的partition follower。partition leader与follower的信息受Zookeeper控制,一旦partition leader所在的broker节点宕机,zookeeper会冲其他的broker的partition follower上选择follower变为parition leader。

    Topic分配partition和partition replica的算法:(1)将Broker(size=n)和待分配的Partition排序。(2)将第i个Partition分配到第(i%n)个Broker上。(3)将第i个Partition的第j个Replica分配到第((i + j) % n)个Broker上

  • 相关阅读:
    797. 所有可能的路径
    1286. 字母组合迭代器
    216. 组合总和 III
    77. 组合
    784. 字母大小写全排列
    90. 子集 II
    78. 子集
    47. 全排列 II
    46. 全排列
    40. 组合总和 II
  • 原文地址:https://www.cnblogs.com/studya/p/14941045.html
Copyright © 2011-2022 走看看