zoukankan      html  css  js  c++  java
  • Codeforces600E Lomsat gelral(线段树合并)

    题目描述

    You are given a rooted tree with root in vertex 1 1 1 . Each vertex is coloured in some colour.

    Let's call colour c c c dominating in the subtree of vertex v v v if there are no other colours that appear in the subtree of vertex v v v more times than colour c c c . So it's possible that two or more colours will be dominating in the subtree of some vertex.

    The subtree of vertex v v v is the vertex v v v and all other vertices that contains vertex v v v in each path to the root.

    For each vertex v v v find the sum of all dominating colours in the subtree of vertex v v v .

    输入输出格式

    输入格式:

    The first line contains integer n n n ( 1<=n<=105 1<=n<=10^{5} 1<=n<=105 ) — the number of vertices in the tree.

    The second line contains n n n integers ci c_{i} ci ( 1<=ci<=n 1<=c_{i}<=n 1<=ci<=n ), ci c_{i} ci — the colour of the i i i -th vertex.

    Each of the next n−1 n-1 n1 lines contains two integers xj,yj x_{j},y_{j} xj,yj ( 1<=xj,yj<=n 1<=x_{j},y_{j}<=n 1<=xj,yj<=n ) — the edge of the tree. The first vertex is the root of the tree.

    输出格式:

    Print n n n integers — the sums of dominating colours for each vertex.

    输入输出样例

    输入样例#1: 复制
    4
    1 2 3 4
    1 2
    2 3
    2 4
    
    输出样例#1: 复制
    10 9 3 4
    
    输入样例#2: 复制
    15
    1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
    1 2
    1 3
    1 4
    1 14
    1 15
    2 5
    2 6
    2 7
    3 8
    3 9
    3 10
    4 11
    4 12
    4 13
    
    输出样例#2: 复制
    6 5 4 3 2 3 3 1 1 3 2 2 1 2 3
    
    题意:一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和。

    题解:就是把每个点的颜色先插入每个点的对应的线段树里,然后dfs时把子树的线段树合并到父节点上,维护题意要求的值就可以了

    代码如下:
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define lson tr[now].l
    #define rson tr[now].r
    #define int long long
    using namespace std;
    
    struct tree
    {
        int l,r,sum,val,ans;
    }tr[5000050];
    
    int rt[100010],cl[100010],cnt,n,anss[100010];
    vector<int> g[100010];
    
    int push_up(int now)
    {
        if(tr[lson].sum>tr[rson].sum)
        {
            tr[now].sum=tr[lson].sum;
            tr[now].val=tr[lson].val;
            tr[now].ans=tr[lson].ans;
        }
        if(tr[rson].sum>tr[lson].sum)
        {
            tr[now].sum=tr[rson].sum;
            tr[now].val=tr[rson].val;
            tr[now].ans=tr[rson].ans;
        }
        if(tr[lson].sum==tr[rson].sum)
        {
            tr[now].sum=tr[lson].sum;
            tr[now].val=tr[lson].val;
            tr[now].ans=tr[lson].ans+tr[rson].ans;
        }
    }
    
    int update(int &now,int l,int r,int pos,int v)
    {
        if(!now) now=++cnt;
        if(l==r)
        {
            tr[now].val=l;
            tr[now].sum+=v;
            tr[now].ans=l;
            return 0;
        }
        int mid=(l+r)>>1;
        if(pos<=mid) update(lson,l,mid,pos,v);
        else update(rson,mid+1,r,pos,v);
        push_up(now);
    }
    
    int merge(int a,int b,int l,int r)
    {
        if(!a) return b;
        if(!b) return a;
        if(l==r)
        {
            tr[a].val=l;
            tr[a].sum+=tr[b].sum;
            tr[a].ans=l;
            return a;
        }
        int mid=(l+r)>>1;
        tr[a].l=merge(tr[a].l,tr[b].l,l,mid);
        tr[a].r=merge(tr[a].r,tr[b].r,mid+1,r);
        push_up(a);
        return a;
    }
    
    int dfs(int now,int f)
    {
        for(int i=0;i<g[now].size();i++)
        {
            if(g[now][i]==f) continue;
            dfs(g[now][i],now);
            merge(rt[now],rt[g[now][i]],1,100000);
        }
        update(rt[now],1,100000,cl[now],1);
        anss[now]=tr[rt[now]].ans;
    }
    
    int main()
    {
        scanf("%lld",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&cl[i]);
            rt[i]=i;
            cnt++;
        }
        int from,to;
        for(int i=1;i<n;i++)
        {
            scanf("%lld%lld",&from,&to);
            g[from].push_back(to);
            g[to].push_back(from);
        }
        dfs(1,0);
        for(int i=1;i<=n;i++)
        {
            printf("%lld ",anss[i]);
        }
    }


  • 相关阅读:
    [华为]计算字符串的相似度
    Java继承和组合
    Java多态(注意事项)
    Eclipse快捷键
    求二叉树中节点的最大距离
    设计模式-工厂模式
    设计模式-单例模式
    滴滴校招0910
    八大排序算法之七-归并排序
    单链表的实现(创建+排序(选择))
  • 原文地址:https://www.cnblogs.com/stxy-ferryman/p/9661993.html
Copyright © 2011-2022 走看看