zoukankan      html  css  js  c++  java
  • SPOJ10606 BALNUM

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4

    题意:求l-r之间13579是偶数个,24680是奇数个的数的个数

    题解:状压压一下每一位是奇是偶,1表示奇,2表示偶,0表示没取
    dp[pos][sta]表示第pos位之前sta的数有几个
    最基础的数位DP写法
    记得去一下前导零

    代码如下:
    #include<bits/stdc++.h>
    using namespace std;
    
    int n;
    long long l,r;
    long long dp[23][60000][2],a[23],b3[12];
    
    int gg(int x,int pos)
    {
        return (x%b3[pos+1])/b3[pos];
    }
    
    inline int check(int sta)
    {
        for(int i=1;i<=9;i+=2)
        {
            if(gg(sta,i)==1) return 0;
        }
        for(int i=0;i<=8;i+=2)
        {
            if(gg(sta,i)==2) return 0;
        }
        return 1;
    }
    
    long long dfs(int pos,int sta,int lim,int lim2)
    {
        if(pos<=0) return check(sta);
        if(!lim&&dp[pos][sta][lim2]!=-1) return dp[pos][sta][lim2];
        int up=lim?a[pos]:9;
        long long res=0;
        int nextsta;
        for(int i=0;i<=up;i++)
        {
            if(!lim2&&i==0) 
            {
                res+=dfs(pos-1,sta,lim&&i==a[pos],lim2);
            }
            else
            {
                if(gg(sta,i)!=2) nextsta=sta+b3[i];
                else nextsta=sta-b3[i]; 
                res+=dfs(pos-1,nextsta,lim&&i==a[pos],lim2|1);
            }
        }
        if(!lim) dp[pos][sta][lim2]=res;
        return res; 
    }
    
    long long get(long long x)
    {
        memset(dp,-1,sizeof(dp));
        int cnt=0;
        while(x)
        {
            a[++cnt]=x%10;
            x/=10;
        }
        return dfs(cnt,0,1,0);
    }
    
    int main()
    {
        b3[0]=1;
        for(int i=1;i<=11;i++) b3[i]=b3[i-1]*3;
        scanf("%d",&n);
        while(n--)
        {
            scanf("%lld%lld",&l,&r);
            printf("%lld
    ",get(r)-get(l-1));
        }
    }


  • 相关阅读:
    最短路径算法 2.Dijkstra算法
    最短路径算法 1.Floyed-Warshall算法
    POLYGON(动态规划)
    JAG Asia 2016-Similarity of Subtrees(BFS+哈希)
    2019ACM-ICPC南京网络赛Holy Grail (SPFA / Floyd 模板题)
    2019ACM-ICPC南京网络赛Greedy Sequence
    快速输入输出
    2019HDU多校训练第七场J-Just Repeat
    JAG Asia 2017 C-----Prime-Factor Prime(素数区间筛)
    2019HDU多校训练第五场1007-permutation 2
  • 原文地址:https://www.cnblogs.com/stxy-ferryman/p/9726319.html
Copyright © 2011-2022 走看看