zoukankan      html  css  js  c++  java
  • SPOJ10606 BALNUM

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4

    题意:求l-r之间13579是偶数个,24680是奇数个的数的个数

    题解:状压压一下每一位是奇是偶,1表示奇,2表示偶,0表示没取
    dp[pos][sta]表示第pos位之前sta的数有几个
    最基础的数位DP写法
    记得去一下前导零

    代码如下:
    #include<bits/stdc++.h>
    using namespace std;
    
    int n;
    long long l,r;
    long long dp[23][60000][2],a[23],b3[12];
    
    int gg(int x,int pos)
    {
        return (x%b3[pos+1])/b3[pos];
    }
    
    inline int check(int sta)
    {
        for(int i=1;i<=9;i+=2)
        {
            if(gg(sta,i)==1) return 0;
        }
        for(int i=0;i<=8;i+=2)
        {
            if(gg(sta,i)==2) return 0;
        }
        return 1;
    }
    
    long long dfs(int pos,int sta,int lim,int lim2)
    {
        if(pos<=0) return check(sta);
        if(!lim&&dp[pos][sta][lim2]!=-1) return dp[pos][sta][lim2];
        int up=lim?a[pos]:9;
        long long res=0;
        int nextsta;
        for(int i=0;i<=up;i++)
        {
            if(!lim2&&i==0) 
            {
                res+=dfs(pos-1,sta,lim&&i==a[pos],lim2);
            }
            else
            {
                if(gg(sta,i)!=2) nextsta=sta+b3[i];
                else nextsta=sta-b3[i]; 
                res+=dfs(pos-1,nextsta,lim&&i==a[pos],lim2|1);
            }
        }
        if(!lim) dp[pos][sta][lim2]=res;
        return res; 
    }
    
    long long get(long long x)
    {
        memset(dp,-1,sizeof(dp));
        int cnt=0;
        while(x)
        {
            a[++cnt]=x%10;
            x/=10;
        }
        return dfs(cnt,0,1,0);
    }
    
    int main()
    {
        b3[0]=1;
        for(int i=1;i<=11;i++) b3[i]=b3[i-1]*3;
        scanf("%d",&n);
        while(n--)
        {
            scanf("%lld%lld",&l,&r);
            printf("%lld
    ",get(r)-get(l-1));
        }
    }


  • 相关阅读:
    moc处理cpp文件
    程序员!你还能年轻几岁?
    多媒体会议系统中的延迟
    把C++类成员函数集成到lua
    Q_PROPERTY使用
    python与c的集成
    注册C函数与类成员函数到lua
    摄像头(WebCam)在Linux操作系统中的驱动方法
    网络营销实战必读之书推荐:《网络营销实战密码》
    这样写的博客才有更多的人愿意看
  • 原文地址:https://www.cnblogs.com/stxy-ferryman/p/9726319.html
Copyright © 2011-2022 走看看