求x的最小正整数解,使得ax=b(mod m)
那么显然ax - b = m * y
ax - my = b
那么就套入Ax+By = K的不定方程中,然后用exgcd求解即可
但这道题求最大正整数解,对于一组解,有这样一个推论
x = x0 +k*(b/gcd(a,b))
y = y0-k*(a/gcd(a,b))
k为任意正整数 可以带入方程中算一下,依然满足方程。
那么也就是说x的变化幅度为b / gcd(a,b)
令d = gcd(a,b), B = b
那么最小正整数解就是 (x * (K / d)) % (B/d) + (B/d)) % (B/d)
x * (K / d)是一个解,然后模掉(B/d),也就是变成和0最近的解
如果是负数,再加上一个(B/d)就整数,然后再模一个(B/d)不会改变值
如果是整数,加上(B/d)再模(B/d)也不会改变值。
所以这样求出来的就是最小正整数解。
最后数论尽量用long long 保险一些,反正一般不开数组,只是开变量,不会耗很多空间,不开白不开。
#include<cstdio>
#include<cctype>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
void read(ll& x)
{
int f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
void exgcd(ll a, ll b, ll& d, ll& x, ll& y)
{
if(!b) { d = a; x = 1; y = 0; }
else { exgcd(b, a % b, d, y, x); y -= x * (a / b); }
}
int main()
{
ll a, b, m, x, y, d;
read(a); read(b); read(m);
ll A = a, B = -m, K = b;
exgcd(A, B, d, x, y);
if(K % d != 0) puts("no solution!");
else printf("%lld", ((x * (K / d)) % (B/d) + (B/d)) % (B/d));
return 0;
}