BZOJ_3448_[Usaco2014 Feb]Auto-complete_Trie
Description
Bessie the cow has a new cell phone and enjoys sending text messages, although she keeps making spelling errors since she has trouble typing on such a small screen with her large hooves. Farmer John has agreed to help her by writing an auto-completion app that takes a partial word and suggests how to complete it. The auto-completion app has access to a dictionary of W words, each consisting of lowercase letters in the range a..z, where the total number of letters among all words is at most 1,000,000. The app is given as input a list of N partial words (1 <= N <= 1000), each containing at most 1000 lowercase letters. Along with each partial word i, an integer K_i is also provided, such that the app must find the (K_i)th word in alphabetical order that has partial word i as a prefix. That is, if one ordered all of the valid completions of the ith partial word, the app should output the completion that is (K_i)th in this sequence.
XYW在和他的男人聊天的时候经常会因为打字速度太慢而被鄙视,于是他想开发一种自动补全软件。开始他有一个包含了w个词的字典(总长度不大于10^6)。接下来他想知道在字典中可以由给定的字符串s加上若干个字母得到的字符串字典序第k大的编号是多少?有n组询问(n<=10^3,s长度<=10^3)
Input
* Line 1: Two integers: W and N.
* Lines 2..W+1: Line i+1: The ith word in the dictionary.
* Lines W+2..W+N+1: Line W+i+1: A single integer K_i followed by a partial word.
Output
* Lines 1..N: Line i should contain the index within the dictionary (an integer in the range 1..W) of the (K_i)th completion (in alphabetical order) of the ith partial word, or -1 if there are less than K_i completions.
Sample Input
dab
ba
ab
daa
aa
aaa
aab
abc
ac
dadba
4 a
2 da
4 da
Sample Output
3
1
-1
并没有想到排序加二分。。
直接对所有串建立trie树,维护子树siz,这样我们查询的时候从a开始查然后不断减K即可。
BZ上面加强了数据,直接这么做会T死。
考虑优化:对于Trie树上那些非叶子节点且只有一个儿子的点,可以直接合并到下面的结点上去。。
这个玩意是我受到后缀树的启发bb出来的,复杂度也不会证,应该可以卡掉。
BZ的数据字符总数可能超过1000000。开2100000就够了(我这个做法是这样
代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define N 2100050 int t[N],ch[N][26],W,n,cnt=1,flg[N],fa[N],is[N],vis[N]; char w[N]; void insert(int idx) { int p=1,i; for(i=1;w[i];i++) { int &k=ch[p][w[i]-'a']; if(!k) k=++cnt; p=k; t[p]++; if(!flg[p]&&!vis[p]) flg[p]=idx; else if(!is[p]) flg[p]=0,vis[p]=1; } is[p]=1; flg[p]=idx; } int query(int p,int k) { if(k==1&&flg[p]) return flg[p]; int i; int now=is[p]; for(i=0;i<26;i++) { now+=t[ch[p][i]]; if(now>=k) { return query(ch[p][i],k-now+t[ch[p][i]]); } } return flg[p]; } int main() { scanf("%d%d",&W,&n); int i,j,sum=0; for(i=1;i<=W;i++) { scanf("%s",w+1); insert(i); // sum+=strlen(w+1); } // printf("%d ",sum); return 0; int K; for(i=1;i<=n;i++) { scanf("%d%s",&K,w+1); int p=1,flg=1; for(j=1;w[j];j++) { if(!ch[p][w[j]-'a']) {flg=0; break;} p=ch[p][w[j]-'a']; } if(!flg||t[p]<K) puts("-1"); else printf("%d ",query(p,K)); } }