连NOI Day1T1都不会做。。。看了题解都写不出来还要抄Claris的代码。。
题目链接: (luogu)https://www.luogu.org/problemnew/show/P1117
(bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4650
(uoj)http://uoj.ac/problem/219
题解:
(f[i])表示以(i)结束的(AA)型子串个数,(g[i])表示以(i)开始的(AA)型子串个数
怎么求(f,g)?
打破思维定势,谁说必须要一个一个求呢
分长度来求
枚举长度(L), 处理所有长度为(2L)的(AA)型子串对(f)和(g)的贡献
如果每隔(L)的长度放一个打点计时器,呸,关键点
那么任何(AA)型子串都会经过两个相邻关键点
首先肯定要满足这两个关键位置上的字符一样
在这个基础上求出往前往后最多多少个一样的
这个就转化成了LCP和LCS问题,并且两个相邻关键点对(f,g)数组的影响是区间+1,使用差分前缀和解决
然后推一推就行了,注意+1-1不要推错
时间复杂度为调和级数,(O(nlog n))
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define llong long long
using namespace std;
const int N = 1<<15;
const int LGN = 15;
const int S = 26;
int log2[N+3];
struct SparseTable
{
int n;
int str[N+3];
int rk[N+3];
int tmp[N+3];
int height[N+3];
int h[N+3];
int sa[N+3];
int wb[N+3];
int mini[N+3][LGN+3];
void get_sa()
{
int *x = rk,*y = tmp;
for(int i=0; i<=S; i++) wb[i] = 0;
for(int i=1; i<=n; i++) wb[x[i]=str[i]]++;
for(int i=1; i<=S; i++) wb[i] += wb[i-1];
for(int i=n; i>=1; i--) sa[wb[x[i]]--] = i;
int s = S,p = 0;
for(int j=1; p<n; j<<=1)
{
p = 0;
for(int i=n-j+1; i<=n; i++) y[++p] = i;
for(int i=1; i<=n; i++) if(sa[i]>j) y[++p] = sa[i]-j;
for(int i=1; i<=s; i++) wb[i] = 0;
for(int i=1; i<=n; i++) wb[x[y[i]]]++;
for(int i=1; i<=s; i++) wb[i] += wb[i-1];
for(int i=n; i>=1; i--) sa[wb[x[y[i]]]--] = y[i];
swap(x,y);
p = 1; x[sa[1]] = 1;
for(int i=2; i<=n; i++) x[sa[i]] = (y[sa[i]]==y[sa[i-1]] && y[sa[i]+j]==y[sa[i-1]+j]) ? p : ++p;
s = p;
}
for(int i=1; i<=n; i++) rk[sa[i]] = i;
for(int i=1; i<=n; i++)
{
h[i] = h[i-1]==0 ? 0 : h[i-1]-1;
while(i+h[i]<=n && sa[rk[i-1]]+h[i]<=n && str[i+h[i]]==str[sa[rk[i]-1]+h[i]])
{
h[i]++;
}
}
for(int i=1; i<=n; i++) height[i] = h[sa[i]];
for(int i=1; i<=n; i++) mini[i][0] = height[i];
for(int j=1; j<=LGN; j++)
{
for(int i=1; i+(1<<j)-1<=n; i++)
{
mini[i][j] = min(mini[i][j-1],mini[i+(1<<j-1)][j-1]);
}
}
}
int querymin(int lb,int rb)
{
int g = log2[rb-lb+1];
return min(mini[lb][g],mini[rb-(1<<g)+1][g]);
}
int LCP(int x,int y)
{
if(x==y) return n-x+1;
if(rk[x]>rk[y]) swap(x,y);
return querymin(rk[x]+1,rk[y]);
}
void clear()
{
for(int i=1; i<=n; i++) str[i] = rk[i] = tmp[i] = height[i] = h[i] = sa[i] = wb[i] = 0;
for(int i=1; i<=n; i++)
{
for(int j=0; j<=LGN; j++)
{
mini[i][j] = 0;
}
}
}
} s1,s2;
llong f[N+3];
llong g[N+3];
char a[N+3];
int n;
int LCP(int x,int y) {return s1.LCP(x,y);}
int LCS(int x,int y) {return s2.LCP(n+1-x,n+1-y);}
void preprocess()
{
log2[1] = 0; for(int i=2; i<=N; i++) log2[i] = log2[i>>1]+1;
}
void clear()
{
s1.clear(); s2.clear();
for(int i=0; i<=n+1; i++) a[i] = 0,f[i] = g[i] = 0ll;
}
int main()
{
preprocess();
int T; scanf("%d",&T);
while(T--)
{
scanf("%s",a+1); n = strlen(a+1); for(int i=1; i<=n; i++) a[i]-=96;
for(int i=1; i<=n; i++) s1.str[i] = a[i]; s1.n = n;
s1.get_sa();
for(int i=1; i<=n; i++) s2.str[i] = a[n+1-i]; s2.n = n;
s2.get_sa();
for(int i=1; i+i<=n; i++)
{
for(int j=i+i; j<=n; j+=i)
{
if(a[j]==a[j-i])
{
int lb = j-LCS(j,j-i)+1,rb = j+LCP(j,j-i)-1;
lb = max(lb+i-1,j); rb = min(rb,j+i-1);
if(lb<=rb)
{
f[lb]++; f[rb+1]--;
g[lb-i-i+1]++; g[rb+1-i-i+1]--;
}
}
}
}
for(int i=1; i<=n; i++) f[i] += f[i-1],g[i] += g[i-1];
llong ans = 0ll;
for(int i=1; i<n; i++)
{
llong tmp = f[i]*g[i+1];
ans += tmp;
}
printf("%lld
",ans);
clear();
}
return 0;
}