zoukankan      html  css  js  c++  java
  • AtCoder AGC007E Shik and Travel (二分、DP、启发式合并)

    题目链接

    https://atcoder.jp/contests/agc007/tasks/agc007_e

    题解

    首先有个很朴素的想法是,二分答案(mid)后使用可行性DP, 设(dp[u][x][y])表示(u)子树内是否可以找到一条路径,在经过第一个叶子前路程是(x), 经过最后一个叶子前路程是(y).
    这个DP显然做了很多无用功,比如我们发现完全可以只记录true的状态((x,y)),进一步发现如果合法状态((x,y))存在另一合法状态((x',y'))满足(x'le x,y'le y), 那么就没有必要存储((x,y))了。于是我们按(x)递增的顺序存储((x,y)),那么(y)一定是递减的。
    这样简化之后,我们发现一个神奇的性质: 设(S_u)(u)记录的集合,(i)(j)为儿子,那么(|S_u|le 2min(|S_i|,|S_j|)). 这是因为(x)(y)的取值都各有(min(|S_i|,|S_j|))种。
    考虑合并的过程: 假设路径的开头在(i)内,那么我们需要找到((x_1,y_1)in S_i, (x_2,y_2)in S_j), 若(y_1+v_i+v_j+x_2le mid), 则把((x_1+v_i,y_2+w_j))加入(S_u). 这个显然可以用双指针优化. 路径的开头在(j)内也同理。
    类似启发式合并可分析复杂度。算上二分总复杂度(O(nlog^2n)).

    代码

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<cassert>
    #include<vector>
    #define llong long long
    #define pll pair<llong,llong>
    #define mkpr make_pair
    using namespace std;
    
    const int N = 1<<17;
    int son[N+3][2];
    llong w[N+3];
    vector<pll> dp[N+3];
    vector<pll> aux1,aux2;
    int n,en;
    llong mid;
    
    void dfs(int u)
    {
    //	printf("dfs %d
    ",u);
    	dp[u].clear(); int ls = son[u][0],rs = son[u][1];
    	if(!ls)
    	{
    		dp[u].push_back(mkpr(0ll,0ll));
    		return;
    	}
    	dfs(ls); dfs(rs);
    	aux1.clear(); aux2.clear();
    	if(dp[rs].size())
    	{
    		int j = 0;
    		for(int i=0; i<dp[ls].size(); i++)
    		{
    			while(j<dp[rs].size()-1 && dp[rs][j+1].first+dp[ls][i].second+w[ls]+w[rs]<=mid) {j++;}
    			if(j<dp[rs].size() && dp[rs][j].first+dp[ls][i].second+w[ls]+w[rs]<=mid) {aux1.push_back(mkpr(dp[ls][i].first+w[ls],dp[rs][j].second+w[rs]));}
    		}
    	}
    	if(dp[ls].size())
    	{
    		int j = 0;
    		for(int i=0; i<dp[rs].size(); i++)
    		{
    			while(j<dp[ls].size()-1 && dp[ls][j+1].first+dp[rs][i].second+w[ls]+w[rs]<=mid) {j++;}
    			if(j<dp[ls].size() && dp[ls][j].first+dp[rs][i].second+w[ls]+w[rs]<=mid) {aux2.push_back(mkpr(dp[rs][i].first+w[rs],dp[ls][j].second+w[ls]));}
    		}
    	}
    	int j = 0,k = 0; llong cur = 1ll<<34;
    	while(j<aux1.size() || k<aux2.size())
    	{
    		if(k==aux2.size() || (j<aux1.size() && aux1[j].first<=aux2[k].first))
    		{
    			if(aux1[j].second<cur) {dp[u].push_back(aux1[j]); cur = aux1[j].second;}
    			j++;
    		}
    		else
    		{
    			if(aux2[k].second<cur) {dp[u].push_back(aux2[k]); cur = aux2[k].second;}
    			k++;
    		}
    	}
    }
    
    bool check()
    {
    	dfs(1);
    	if(dp[1].size()) {return true;}
    	else {return false;}
    }
    
    int main()
    {
    	scanf("%d",&n);
    	for(int i=2; i<=n; i++)
    	{
    		int u; llong x; scanf("%d%lld",&u,&x);
    		w[i] = x; if(son[u][0]) son[u][1] = i; else son[u][0] = i;
    	}
    	llong left = 0ll,right = 1ll<<34;
    	while(left<right)
    	{
    		mid = left+((right-left)>>1)
    //		printf("mid=%lld
    ",mid);
    		bool ok = check();
    		if(ok) {right = mid;}
    		else {left = mid+1;}
    	}
    	printf("%lld
    ",right);
    	return 0;
    }
    
  • 相关阅读:
    关于微信三点定位法
    PHP 取302跳转后真实 URL 的两种方法
    前端布局神器display:flex
    JS实现document.ready
    为什么无返回值的链表的插入操作头结点一定要用指向指针的指针
    常量字符串和指针
    C语言中指针数组和数组指针的区别
    二维数组简介与使用
    访问者模式
    解释器模式
  • 原文地址:https://www.cnblogs.com/suncongbo/p/11527315.html
Copyright © 2011-2022 走看看