zoukankan      html  css  js  c++  java
  • Multi–Layer Perceptron & Backpropagation algorithm

    As for Multi-Layer Perceptron, it can be taken as a combination of many Linear Classifications, using many hyper plane to split the space and separate the dataset, to get a better classification, also MLP can be used in regression and Dimension reduce. In this blog, we’ll take about the MLP in classification, how to calculate the neutron network and show the main code.

    As for a MLP with 2-layer, the following picture show the combination of 2 neutron (or two hyper plane), simplify the neutron as the picture bellow and define the functions:

    The Back-propagation algorithm

    It is an iterative algorithm, repeating the following steps

    1. Pick a pair (X, z∗) randomly from the training set

    2. Forward pass

    3. Backward pass

     

    In step2: Forward Pass we calculate Y, Y’, z and z’

    In step2: Backward Pass we calculate update W, wn, V, vn, Error

     

     1 /**
     2      *  computes the forward pass of the backpropagation algorithm
     3      *  calculate Y, Yp, z and zp; X have N coefficients
     4      */
     5     private void forward(final Vector X){
     6         //calculate Y,Yp
     7         for(int i=0;i<K;i++){
     8             double temp= vn.get(i)+X.dot(V[i]);
     9             temp=Math.tanh(temp);
    10             Y.set(i, temp);
    11             temp=1-temp*temp;
    12             Yp.set(i, temp);
    13         }
    14         //calculate z & zp
    15         z=wn+Y.dot(W);
    16         z=Math.tanh(z);
    17         zp=1-z*z;    
    18     }
    19     /**
    20      * computes the backward pass of the backpropagation algorithm, 
    21      * with X as input and as desired output c
    22      * update W, wn, V , vn, E
    23      */
    24     private void backward(final Vector X, double c){
    25         double pout=-(z-c)*zp;
    26         //System.out.println(zp);
    27         //update W & wn
    28         for(int i=0;i<K;i++){
    29             double delt_v=eta*Y.get(i)*pout;
    30             W.set(i, W.get(i)+delt_v);
    31             double pin=pout*W.get(i)*Yp.get(i);
    32             //update V & vn
    33             for(int j=0;j<N;j++)
    34                 V[i].set(j, V[i].get(j)+etaout*X.get(j)*pin);
    35             vn.set(i, vn.get(i)+etaout*pin);
    36         }
    37         wn+=eta*pout;
    38     }
    39     /**
    40      * returns true if the output of the MLP for X is positive, 
    41      * false if the output of the MLP for X is negative
    42      */
    43     public boolean classify(final Vector X){
    44         Vector Yclassify=new Vector(K);
    45         
    46         for(int i=0;i<K;i++){
    47             double temp= vn.get(i)+X.dot(V[i]);
    48             temp=Math.tanh(temp);
    49             Yclassify.set(i, temp);
    50         }
    51         //calculate z & zp
    52         z=wn+Yclassify.dot(W);    
    53         return z>0;        
    54     }
    55     /**
    56      * updates W, wn, V ,vn update_weights implements 
    57      * one iteration of the backpropagation algorithm
    58      */
    59     public void update(final Vector X, boolean inClass){
    60         double c= inClass? 1:-1;
    61         forward(X);
    62         backward(X, c);
    63     }

    The following picture shows the result of 2 dataset running MLP (the Figure1/2-1 is the dataset, and the Figure1/2-2 is result).

    参考资料:

    http://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf

    http://en.wikipedia.org/wiki/Multilayer_perceptron

    http://en.wikipedia.org/wiki/Backpropagation

    http://www.marmakoide.org/download/teaching/dm/dm-perceptron-2.pdf

     

  • 相关阅读:
    EF多个上下文迁移
    Ruby知识点三:运算符
    Ruby知识点二:类
    不用搭环境的10分钟AngularJS指令简易入门01(含例子)
    JavaScript DOM编程艺术第二版学习(1/4)
    VisualStudio2013&VS2015内置SQLServer入门 (三)
    VisualStudio2015内置LocalDB
    VisualStudio2013内置SQLServer入门
    Java反射学习(java reflect)(三)
    Java反射学习(java reflect)(二)
  • 原文地址:https://www.cnblogs.com/sunshinewill/p/3029716.html
Copyright © 2011-2022 走看看