zoukankan      html  css  js  c++  java
  • Multi–Layer Perceptron & Backpropagation algorithm

    As for Multi-Layer Perceptron, it can be taken as a combination of many Linear Classifications, using many hyper plane to split the space and separate the dataset, to get a better classification, also MLP can be used in regression and Dimension reduce. In this blog, we’ll take about the MLP in classification, how to calculate the neutron network and show the main code.

    As for a MLP with 2-layer, the following picture show the combination of 2 neutron (or two hyper plane), simplify the neutron as the picture bellow and define the functions:

    The Back-propagation algorithm

    It is an iterative algorithm, repeating the following steps

    1. Pick a pair (X, z∗) randomly from the training set

    2. Forward pass

    3. Backward pass

     

    In step2: Forward Pass we calculate Y, Y’, z and z’

    In step2: Backward Pass we calculate update W, wn, V, vn, Error

     

     1 /**
     2      *  computes the forward pass of the backpropagation algorithm
     3      *  calculate Y, Yp, z and zp; X have N coefficients
     4      */
     5     private void forward(final Vector X){
     6         //calculate Y,Yp
     7         for(int i=0;i<K;i++){
     8             double temp= vn.get(i)+X.dot(V[i]);
     9             temp=Math.tanh(temp);
    10             Y.set(i, temp);
    11             temp=1-temp*temp;
    12             Yp.set(i, temp);
    13         }
    14         //calculate z & zp
    15         z=wn+Y.dot(W);
    16         z=Math.tanh(z);
    17         zp=1-z*z;    
    18     }
    19     /**
    20      * computes the backward pass of the backpropagation algorithm, 
    21      * with X as input and as desired output c
    22      * update W, wn, V , vn, E
    23      */
    24     private void backward(final Vector X, double c){
    25         double pout=-(z-c)*zp;
    26         //System.out.println(zp);
    27         //update W & wn
    28         for(int i=0;i<K;i++){
    29             double delt_v=eta*Y.get(i)*pout;
    30             W.set(i, W.get(i)+delt_v);
    31             double pin=pout*W.get(i)*Yp.get(i);
    32             //update V & vn
    33             for(int j=0;j<N;j++)
    34                 V[i].set(j, V[i].get(j)+etaout*X.get(j)*pin);
    35             vn.set(i, vn.get(i)+etaout*pin);
    36         }
    37         wn+=eta*pout;
    38     }
    39     /**
    40      * returns true if the output of the MLP for X is positive, 
    41      * false if the output of the MLP for X is negative
    42      */
    43     public boolean classify(final Vector X){
    44         Vector Yclassify=new Vector(K);
    45         
    46         for(int i=0;i<K;i++){
    47             double temp= vn.get(i)+X.dot(V[i]);
    48             temp=Math.tanh(temp);
    49             Yclassify.set(i, temp);
    50         }
    51         //calculate z & zp
    52         z=wn+Yclassify.dot(W);    
    53         return z>0;        
    54     }
    55     /**
    56      * updates W, wn, V ,vn update_weights implements 
    57      * one iteration of the backpropagation algorithm
    58      */
    59     public void update(final Vector X, boolean inClass){
    60         double c= inClass? 1:-1;
    61         forward(X);
    62         backward(X, c);
    63     }

    The following picture shows the result of 2 dataset running MLP (the Figure1/2-1 is the dataset, and the Figure1/2-2 is result).

    参考资料:

    http://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf

    http://en.wikipedia.org/wiki/Multilayer_perceptron

    http://en.wikipedia.org/wiki/Backpropagation

    http://www.marmakoide.org/download/teaching/dm/dm-perceptron-2.pdf

     

  • 相关阅读:
    php 工厂模式实例
    nginx多虚拟主机配置
    PHP提高编程效率的方法
    PHP 多态
    锁机制之PHP文件锁
    深入认识javascript中的eval函数(转载)
    PHP&MYSQL 常用的一些性能检测
    寒假作业1:问答题
    软件测试基础知识总结
    七种测试驱动模式
  • 原文地址:https://www.cnblogs.com/sunshinewill/p/3029716.html
Copyright © 2011-2022 走看看