转自:http://blog.csdn.net/imzoer/article/details/7436323
问题详见:编程之美
思路:
01背包问题变形
假设数组A[1..2N]所有元素的和是SUM。
模仿动态规划解0-1背包问题的策略,令S(k, i)表示前k个元素中任意i个元素的和的集合。
显然:
S(k, 1) = {A[i] | 1<= i <= k}
S(k, k) = {A[1]+A[2]+…+A[k]}
S(k, i) = S(k-1, i) U {A[k] + x | x属于S(k-1, i-1) }
他人代码:
public class Main { public static void main(String[] args) { int A[] = { 1, 2, 3, 5, 7, 8, 9 }; // int A[] = { 1, 5, 7, 8, 9, 6, 3, 11, 20, 17 }; func(A); } static void func(int A[]) { int i; int j; int n2 = A.length; int n = n2 / 2; int sum = 0; for (i = 0; i < A.length; i++) { sum += A[i]; } /** * flag[i][j]:任意i个数组元素之和是j,则flag[i][j]为true */ boolean flag[][] = new boolean[A.length + 1][sum / 2 + 1]; for (i = 0; i < A.length; i++) for (j = 0; j < sum / 2 + 1; j++) flag[i][j] = false; flag[0][0] = true; for (int k = 0; k < n2; k++) { for (i = k > n ? n : k; i >= 1; i--) { // 两层外循环是遍历集合S(k,i) for (j = 0; j <= sum / 2; j++) { if (j >= A[k] && flag[i - 1][j - A[k]]) flag[i][j] = true; } } } for (i = sum / 2; i >= 0; i--) { if (flag[n][i]) { System.out.println("sum is " + sum); System.out.println("sum/2 is " + sum / 2); System.out.println("i is " + i); System.out.println("minimum delta is " + Math.abs(2 * i - sum)); break; } } } }
学习之处:
- 对于判断一个元素要还是不要,要了它对总体的结果有没有影响,它的存在是否由意思,考虑用01背包问题解决
- 现在刷题有了一定的数量了,基本常见的数据结构和算法也都有了了解,知识范围也就那么大,遇到问题要像是否接触过类似的问题,善于总结,归纳和思考。