zoukankan      html  css  js  c++  java
  • [b0044] numpy_快速上手

     1 概念理清

     2 创建数组

    2.1 

    f1= np.array(
    [
    [1,2,3,4],
    [2,3,4,5],
    [3,4,5,6]
    ]
    )

     其他代码

    a= np.array([
        [
            [3.4,5,6,8],
            [3,2.4,5,7]
        ],
        [    [2.3,4,5,6],
            [0.9,5,6,1]
        ],
        [
            [9,6.7,3,2],
            [1,3,4,5]
        ]
     ])
     
     
    b = np.array((
        (
            (1,2,3,4),(4,5,6,7),(9,3,4,5)
        ),
        (
            (0,2,3,4),(4,5,6,7),(4,5,2,3)
        )
    ))
    View Code

    2.2

    • zeros
    • empty
    • ones 
    • eye
    # 零矩阵
    In [49]: f2 = zeros( (3,4) )
    
    In [50]: f2
    Out[50]: 
    array([[ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.]])
    
    # 单位矩阵
    In [51]: eye(3)
    Out[51]: 
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])

    2.3

    2.3.1 arange

    f3 = arange(15).reshape(3,5)   

    注:

    numpy.arange  指向同一个内存空间

    >>> arange(15)
    array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

    >>> arange( 10, 30, 5 )

    array([10, 15, 20, 25])

    2.3.2 linspace 

    # linspace 等差序列, (开始,结束,元素个数)
    In [154]: linspace(2,12,3)
    Out[154]: array([ 2., 7., 12.]

    2.3.3 logspace 

    # logspace 等比数列, (开始,结束,元素个数)
    * 第一个数 10^2
    * 第二个数 10^12
    In [155]: logspace(2,12,3)
    Out[155]: array([ 1.00000000e+02, 1.00000000e+07, 1.00000000e+12])

    2.3.4 random

    #random 函数
    In [177]: np.random.random()

    In [178]: np.random.random((2,3,4))
    Out[178]:
    array([[[ 0.05126289, 0.66402449, 0.22970131, 0.73774777],
    [ 0.72501932, 0.20642975, 0.38318838, 0.70826703],
    [ 0.86349343, 0.34179916, 0.32829582, 0.55624637]],

    [[ 0.59645461, 0.83145358, 0.85956141, 0.81924494],
    [ 0.01116166, 0.71089623, 0.91432385, 0.66226528],
    [ 0.5791923 , 0.42764113, 0.56575513, 0.54864404]]])

    In [182]: np.random.random_sample((2,3))
    Out[182]:
    array([[ 0.3591195 , 0.89974204, 0.20622608],
    [ 0.64718978, 0.24135722, 0.44665569]])

    其它函数array, zeros, zeros_like, ones, ones_like, empty, empty_like, arange, linspace, rand, randn, fromfunction, fromfile参考:NumPy示例

    3 索引,切片和迭代

    4 基本运算

    In [106]: a = array( [20,30,40,50] )
    
    In [107]: b = arange( 4 )
    
    In [108]: b
    Out[108]: array([0, 1, 2, 3])
    
    In [109]: c = a-b
    
    In [110]: c
    Out[110]: array([20, 29, 38, 47])
    
    In [111]: b**2
    Out[111]: array([0, 1, 4, 9])
    
    In [112]: 10*sin(a)
    Out[112]: array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
    
    In [113]: a<35
    Out[113]: array([ True,  True, False, False], dtype=bool)
    
    In [114]: b+3
    Out[114]: array([3, 4, 5, 6]

      In [117]: b*3

      Out[117]: array([0, 3, 6, 9])

    # 矩阵积 dot
    第一个矩阵的列 = 第二个矩阵的行

    (3*4) *  (4*5)  =  (3*5) 

    In [115]: f1= np.array(
         ...:   [
         ...:     [1,2,3,4],
         ...:     [2,3,4,5],
         ...:     [3,4,5,6]
         ...:   ]
         ...: )
         ...: 
         ...: 
         ...: f2= np.array(
         ...:   [
         ...:     [1,2,3,4,1],
         ...:     [2,3,4,5,2],
         ...:     [3,4,5,6,3],
         ...:     [3,4,5,6,4]
         ...:   ]
         ...: )
         ...: 
    
    In [116]: f1.dot(f2)
    Out[116]: 
    array([[26, 36, 46, 56, 30],
           [35, 49, 63, 77, 40],
           [44, 62, 80, 98, 50]])

    行列式、秩、逆矩阵、转置

    In [33]: a
    Out[33]: 
    array([[  3.,   2.,   3.],
           [  4.,   7.,   6.],
           [  7.,   8.,  11.]])
    
    # 方阵
    In [34]: a.shape
    Out[34]: (3L, 3L)
    
    # 求秩
    In [35]: np.linalg.matrix_rank(a)
    Out[35]: 3
    
    # 求行列式
    
    In [39]: np.linalg.det(a)
    Out[39]: 32.0
    
    # 求逆矩阵
    In [40]: b = np.linalg.inv(a)
    
    In [41]: b
    Out[41]: 
    array([[ 0.90625,  0.0625 , -0.28125],
           [-0.0625 ,  0.375  , -0.1875 ],
           [-0.53125, -0.3125 ,  0.40625]])
    
    # 验证
    In [42]: a.dot(b)
    Out[42]: 
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    
    # 转置
    In [43]: a.T
    Out[43]: 
    array([[  3.,   4.,   7.],
           [  2.,   7.,   8.],
           [  3.,   6.,  11.]])
    
    In [44]: a.transpose()
    Out[44]: 
    array([[  3.,   4.,   7.],
           [  2.,   7.,   8.],
           [  3.,   6.,  11.]])
  • 相关阅读:
    系统边界确定
    用例分析技术:确定系统边界
    系统边界的定义
    【转】读《程序员修炼之道》
    项目管理之需求基线管理
    字符串流sstream[part3/使用字符串流进行安全的类型转换]
    字符串流sstream[part2/使用同一个字符串流反复读写数据]
    字符串流sstream[part1/基本知识]
    文件操作的openmode
    文件操作的一些函数
  • 原文地址:https://www.cnblogs.com/sunzebo/p/9675696.html
Copyright © 2011-2022 走看看