zoukankan      html  css  js  c++  java
  • 最长回文子串

    给你一个字符串 s,找到 s 中最长的回文子串。

    示例 1:

    输入:s = "babad"
    输出:"bab"
    解释:"aba" 同样是符合题意的答案。
    示例 2:

    输入:s = "cbbd"
    输出:"bb"
    示例 3:

    输入:s = "a"
    输出:"a"
    示例 4:

    输入:s = "ac"
    输出:"a"
     

    提示:

    1 <= s.length <= 1000
    s 仅由数字和英文字母(大写和/或小写)组成

    解法一:

    对于字符串abccba或者abcdcba,满足s[i]==s[len(s)-1-i]时,字符串被称为回文字符串。

    这个解法的缺点是运行时间很长。

    def longestPalindrome(s):
        length =  len(s)
        max_palindrome = None
        max_length = 0
        for i in range(length):
            if (length-i)<=max_length:
                break
            for j in range(length-i):
                length_palindrome = (length - i) - j
                if length_palindrome<=max_length:
                    break
                for k in range(length_palindrome):
                    if s[i+k]==s[(length-1-j)-k]:
                        if (((length-1-j)-k)-(i+k)) in [0,1]:
                            if length_palindrome > max_length:
                                max_palindrome = s[i:(i+length_palindrome)]
                                max_length = length_palindrome
                            break
                    else:
                        break
        return max_palindrome

    解法二:

    动态规划
    思路与算法

    对于一个子串而言,如果它是回文串,并且长度大于 22,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串 \textrm{``ababa''}“ababa”,如果我们已经知道 \textrm{``bab''}“bab” 是回文串,那么 \textrm{``ababa''}“ababa” 一定是回文串,这是因为它的首尾两个字母都是 \textrm{``a''}“a”。

    根据这样的思路,我们就可以用动态规划的方法解决本题。我们用 P(i,j)P(i,j) 表示字符串 ss 的第 ii 到 jj 个字母组成的串(下文表示成 s[i:j]s[i:j])是否为回文串:

    这里的「其它情况」包含两种可能性:

    那么我们就可以写出动态规划的状态转移方程:

    也就是说,只有 s[i+1:j-1]s[i+1:j−1] 是回文串,并且 ss 的第 ii 和 jj 个字母相同时,s[i:j]s[i:j] 才会是回文串。

    上文的所有讨论是建立在子串长度大于 22 的前提之上的,我们还需要考虑动态规划中的边界条件,即子串的长度为 11 或 22。对于长度为 11 的子串,它显然是个回文串;对于长度为 22 的子串,只要它的两个字母相同,它就是一个回文串。因此我们就可以写出动态规划的边界条件:

    根据这个思路,我们就可以完成动态规划了,最终的答案即为所有(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。

    class Solution:
        def longestPalindrome(self, s: str) -> str:
            n = len(s)
            if n < 2:
                return s
            
            max_len = 1
            begin = 0
            # dp[i][j] 表示 s[i..j] 是否是回文串
            dp = [[False] * n for _ in range(n)]
            for i in range(n):
                dp[i][i] = True
            
            # 递推开始
            # 先枚举子串长度
            for L in range(2, n + 1):
                # 枚举左边界,左边界的上限设置可以宽松一些
                for i in range(n):
                    # 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
                    j = L + i - 1
                    # 如果右边界越界,就可以退出当前循环
                    if j >= n:
                        break
                        
                    if s[i] != s[j]:
                        dp[i][j] = False 
                    else:
                        if j - i < 3:
                            dp[i][j] = True
                        else:
                            dp[i][j] = dp[i + 1][j - 1]
                    
                    # 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
                    if dp[i][j] and j - i + 1 > max_len:
                        max_len = j - i + 1
                        begin = i
            return s[begin:begin + max_len]

    解法原文:

    https://leetcode-cn.com/problems/longest-palindromic-substring/solution/zui-chang-hui-wen-zi-chuan-by-leetcode-solution/

  • 相关阅读:
    Zookeeper zkCli.sh常用命令
    windows 服务
    Zookeeper的下载安装
    Zookeeper 基础知识
    在Java中使用Redis
    Redis 集群(cluster)
    Redis 哨兵(Sentinel)机制
    Redis 主从复制
    Redis 发布/订阅
    Redis 事务
  • 原文地址:https://www.cnblogs.com/superbaby11/p/15683619.html
Copyright © 2011-2022 走看看