zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 33719    Accepted Submission(s): 15340


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
    #include<iostream>
    #include<stdio.h>
    #include<string>
    #include<string.h>
    using namespace std;
    int main(){
        char s1[1000];
        char s2[1000];
        while(~scanf("%s%s",s1,s2)){
            int dp[1005][1005];
            int n=strlen(s1);
            int m=strlen(s2);
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<m;j++){
                    if(s1[i]==s2[j]){
                        dp[i+1][j+1]=dp[i][j]+1;
                    }else{
                        dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
                    }
                }
            }
            printf("%d
    ",dp[n][m]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    ADERA3 省选模拟赛 SPOJ LMCONST
    TYVJ 1730 二逼平衡树 线段树套平衡树
    BZOJ 1059 [ZJOI2007]矩阵游戏 二分图匹配
    BZOJ 1056 [HAOI2008]排名系统 Splay+Hash
    OI教会我的
    BZOJ 1055 [HAOI2008]玩具取名 DP
    BZOJ 1058 [ZJOI2007]报表统计 Splay
    为自己而奋斗
    [总结]高斯消元&XOR方程
    我 的 2013
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/5705320.html
Copyright © 2011-2022 走看看