zoukankan      html  css  js  c++  java
  • hdu 5446 Unknown Treasure Lucas定理+中国剩余定理

    Unknown Treasure

    Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 2209    Accepted Submission(s): 821


    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with MM is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k}.
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  5842 5841 5840 5839 5838 
     
    分析:
    根据Lucas求解中 每一个i:C(n,m)%pi,然后根据中国剩余定理把这些结果整合起来。就能得到答案。
    注意中国剩余定理在计算当前余数与其他余数乘积的最小公倍数的gcd为1的值时候,由于数据量太大,要取模。
    #include<iostream>
    #include<stdio.h>
    using namespace std;
    long long pri[15];
    long long a[15];
    long long ext_gcd(long long a,long long b,long long *x,long long *y)
    {
        if(b==0)
        {
            *x=1,*y=0;
            return a;
        }
        long long r = ext_gcd(b,a%b,x,y);
        long long t = *x;
        *x= *y;
        *y = t - a/b * *y;
        return r;
    }
    long long quick_mod(long long n,long long m,long long mod)
    {
        long long ans=1;
        while(m)
        {
            if(m&1)
                ans=(ans*n)%mod;
            m>>=1;
            n=(n*n)%mod;
        }
        return ans%mod;
    }
    long long get_c(long long n,long long m,long long mod)
    {
        long long a=1,b=1;
        for(int i=1; i<=m; i++)
        {
            b=b*i%mod;
            a=a*(n-i+1)%mod;
        }
        return (a*(quick_mod(b,mod-2,mod)))%mod;
    }
    long long Lucas(long long n,long long m,long long mod)
    {
        if(m==0) return 1;
        return (Lucas(n/mod,m/mod,mod)*get_c(n%mod,m%mod,mod))%mod;
    }
    long long mul(long long a,long long n,long long mod)
    {
        a = (a%mod+mod)%mod;
        n = (n%mod+mod)%mod;
        long long ret =0;
        while(n)
        {
            if(n&1)
                ret=(ret+a)%mod;
            a=(a+a)%mod;
            n>>=1;
        }
        return ret%mod;
    }
    long long chinese_reminder(long long a[],long long pri[],int len)
    {
        long long mul_pri=1;
        long long res=0;
        for(int i=0;i<len;i++)
        {
            mul_pri*=pri[i];
        }
        for(int i=0;i<len;i++)
        {
            long long m = mul_pri/pri[i];
            long long x,y;
            ext_gcd(pri[i],m,&x,&y);
            //res=(res+y*m*a[i])%mul_pri;
            res=(res+mul(mul(y,m,mul_pri),a[i],mul_pri))%mul_pri;
        }
        return ((res%mul_pri+mul_pri)%mul_pri);
    }
    int main()
    {
        int t;
        long long n,m;
        int k;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%I64d%I64d%d",&n,&m,&k);
            for(int i=0; i<k; i++)
                scanf("%I64d",pri+i);
            for(int i=0; i<k; i++)
            {
                a[i]=Lucas(n,m,pri[i]);
            }
            long long ans = chinese_reminder(a,pri,k);
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)
    防止登录页面出如今frame中
    android--显式跳转和隐式跳转的差别使用方法
    卫星照片
    poj 2586 Y2K Accounting Bug (贪心)
    【转】关于Python脚本开头两行的:#!/usr/bin/python和# -*- coding: utf-8 -*-的作用 – 指定文件编码类型
    【转】在Eclipse中使用PyDev进行Python开发
    【转】eclipse + Pydev 配置Python开发环境
    【转】Python自动化测试 (一) Eclipse+Pydev 搭建开发环境
    【转】Eclipse的启动问题【an error has occurred see the log file】
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/5772357.html
Copyright © 2011-2022 走看看