Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
状态方程 f[i][j] 表示word1的前i个字符转换成word2的前jg字符所需要的最小次数。
两种情况:
if(word1.charAt(i - 1) == word2.charAt(j - 1)) {
f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i][j - 1] + 1, f[i - 1][j] + 1));
} else {
f[i][j] = Math.min(f[i - 1][j - 1] + 1, Math.min(f[i][j - 1] + 1, f[i - 1][j] + 1));
}
public class Solution {
public int minDistance(String word1, String word2) {
if(word1 == null && word2 == null) {
return 0;
}
if(word1 == null) {
return word2.length();
}
if(word2 == null) {
return word1.length();
}
int m = word1.length();
int n = word2.length();
int[][] f = new int[m + 1][n + 1];
for(int i = 1; i <= m; i++) {
f[i][0] = i;
}
for(int j = 1; j <= n; j++) {
f[0][j] = j;
}
for(int i = 1; i <= m; i++) {
for(int j = 1; j <= n; j++) {
if(word1.charAt(i - 1) == word2.charAt(j - 1)) {
f[i][j] = Math.min(f[i - 1][j - 1], Math.min(f[i][j - 1] + 1, f[i - 1][j] + 1));
} else {
f[i][j] = Math.min(f[i - 1][j - 1] + 1, Math.min(f[i][j - 1] + 1, f[i - 1][j] + 1));
}
}
}
return f[m][n];
}
}