zoukankan      html  css  js  c++  java
  • HDU 2193 AVL Tree

      AVL Tree

      An AVL tree is a kind of balanced binary search tree. Named after their inventors, Adelson-Velskii and Landis, they were the first dynamically balanced trees to be proposed. Like red-black trees, they are not perfectly balanced, but pairs of sub-trees differ in height by at most 1, maintaining an O(logn) search time. Addition and deletion operations also take O(logn) time.
    Definition of an AVL tree
    An AVL tree is a binary search tree which has the following properties:
    1. The sub-trees of every node differ in height by at most one.
    2. Every sub-tree is an AVL tree.

    Balance requirement for an AVL tree: the left and right sub-trees differ by at most 1 in height.An AVL tree of n nodes can have different height.
    For example, n = 7:

    So the maximal height of the AVL Tree with 7 nodes is 3.
    Given n,the number of vertices, you are to calculate the maximal hight of the AVL tree with n nodes.

    Input

      Input file contains multiple test cases. Each line of the input is an integer n(0<n<=10^9). 
    A line with a zero ends the input. 
    Output

      An integer each line representing the maximal height of the AVL tree with n nodes.Sample Input

    1
    2
    0

    Sample Output

    0
    1

    解题思路:
      本题给出一个整数,要求输出其能建立的最高的平衡二叉树的高度。

      关于平衡二叉树最小节点最大高度有一个公式,设height[i]为高度为i的平衡二叉树的最小结点数,则height[i] = height[i - 1] + height[i - 2] + 1;

      因为高度为0时平衡二叉树:

      #

      高度为1时平衡二叉树:

    0    #  或  #

           /        

    1  #             #

      

      高度为2时平衡二叉树:

    0      #    或    #

             /              /   

    1    #     #     #     #

        /                

    2  #                 #

      高度为i时平衡二叉树:

          #    或    #

            /              /   

        i - 2   i - 1       i - 1    i - 2

      所以只需要将10^9内的数据记录后让输入的数据与之比较就可得到答案。(高度不会超过46)

     1 #include <cstdio>
     2 using namespace std;
     3 const int maxn = 50;
     4 int height[maxn];   
     5 int main(){
     6     height[0] = 1;
     7     height[1] = 2;
     8     for(int i = 2; i < maxn; i++){  //记录1 - 50层最小需要多少节点
     9         height[i] = height[i - 1] + height[i - 2] + 1;
    10     }
    11     int n;
    12     while(scanf("%d", &n) != EOF){  //输入数据
    13         if(n == 0)  //如果为0结束程序
    14             break;
    15         int ans = -1;
    16         for(int i = 0; i < maxn; i++){  //从第0层开始比较
    17             if(n >= height[i])  //只要输入的数据大于等于该点的最小需求答案高度加一
    18                 ans++;
    19             else
    20                 break;  //否则结束循环
    21         }
    22         printf("%d
    ", ans);    //输出答案
    23     }
    24     return 0;
    25 }
  • 相关阅读:
    Hive2.0函数大全(中文版)
    Centos7 安装并配置redis
    Java内部类
    beeline: 新版连接Hive server的工具
    jsoup的Document类
    Jsoup类
    jsoup的Node类
    jsoup的Element类
    Java中的多线程
    Java中的文件IO流
  • 原文地址:https://www.cnblogs.com/suvvm/p/9886670.html
Copyright © 2011-2022 走看看