zoukankan      html  css  js  c++  java
  • poj3233 矩阵等比数列求和 二分

    对于数列S(n) = a + a^2 + a^3 +....+ a^n;

    可以用二分的思想进行下列的优化。

    if(n & 1)

      S(n) = a + a^2 + a^3 + ....... + a^n;

      = a + a^2 + a^3 +..+ a^((n-1) / 2) + a^((n-1) / 2 + 1) + a^((n-1) / 2 + 2) + ... + a^((n-1) / 2 + (n-1) / 2) + a^((n-1) / 2 + (n-1) / 2 + 1);

      = (1 + a^((n-1) / 2 + 1)) * S((n-1)/2) + a^((n-1) / 2 + 1)

    else 

      S(n) = a + a^2 + a^3 + ....... + a^n;

      = a + a^2 + a^3 +..+ a^((n / 2) + a^(n / 2 + 1) + a^(n / 2 + 2) + ... + a^(n/ 2 + n / 2);

      = (1 + a^(n / 2)) * S(n / 2);

    这样就可以避免矩阵的除法了! 还有就是MOD真的很慢。

    #include<map>
    #include<set>
    #include<string>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<vector>
    #include<cstdio>
    #include<time.h>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define INF 1000000001
    #define ll long long
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    using namespace std;
    const int MAXN = 100010;
    struct Mat
    {
        ll a[45][45];
    }E;
    int n,k,MOD;
    Mat Matadd(Mat a,Mat b)
    {
        Mat c;
        for(int i = 0; i < n; i++){
            for(int j = 0; j < n; j++){
                c.a[i][j] = (a.a[i][j] + b.a[i][j])%MOD;
            }
        }
        return c;
    }
    Mat Matmul(Mat a,Mat b)
    {
        Mat c;
        for(int i = 0; i < n; i++){
            for(int j = 0; j < n; j++){
                c.a[i][j] = 0;
                for(int k = 0; k < n; k++){
                    c.a[i][j] += (a.a[i][k] * b.a[k][j])%MOD; 
                }
                c.a[i][j] %= MOD;
            }
        }
        return c;
    }
    Mat power(Mat a,int n)
    {
        Mat c;
        c = E;
        while(n){
            if(n & 1){
                c = Matmul(c,a);
            }
            a = Matmul(a,a);
            n >>= 1;
        }
        return c;
    }
    Mat sum(Mat a,int k)//求S(k)
    {
        if(k == 1)return a;
        Mat t = sum(a,k/2);//S(k/2)
        if(k & 1){
            Mat cur = power(a,k/2 + 1);//a^(k/2 + 1)
            t = Matadd(t,Matmul(t,cur));//(1 + a^(k/2+1))*S(k/2)
            t = Matadd(t,cur);//(1 + a^(k/2 + 1))*S(k/2)
        }
        else {
            Mat cur = power(a,k/2);//a^(k/2)
            t = Matadd(t,Matmul(t,cur));//(1 + a^(k/2))*S(k/2)
        }
        return t;
    }
    int main()
    {
        while(scanf("%d%d%d",&n,&k,&MOD) != EOF){
            Mat a;
            memset(E.a,0,sizeof(E.a));
            for(int i = 0; i < n; i++)E.a[i][i] = 1;
            for(int i = 0; i < n; i++){
                for(int j = 0; j < n; j++){
                    scanf("%lld",&a.a[i][j]);
                    a.a[i][j] %= MOD;
                }
            }
            Mat ans = sum(a,k);
            for(int i = 0; i < n; i++){
                for(int j = 0; j < n; j++){
                    if(j == 0)printf("%lld",ans.a[i][j]);
                    else {
                        printf(" %lld",ans.a[i][j]);
                    }
                }
                printf("
    ");
            }
        }
        return 0;
    }
  • 相关阅读:
    CSUFT 1002 Robot Navigation
    CSUFT 1003 All Your Base
    Uva 1599 最佳路径
    Uva 10129 单词
    欧拉回路
    Uva 10305 给任务排序
    uva 816 Abbott的复仇
    Uva 1103 古代象形文字
    Uva 10118 免费糖果
    Uva 725 除法
  • 原文地址:https://www.cnblogs.com/sweat123/p/5439432.html
Copyright © 2011-2022 走看看