zoukankan      html  css  js  c++  java
  • poj3694 缩点边双连通分量

    Network
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 8669   Accepted: 3175

    Description

    A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.

    You are to help the administrator by reporting the number of bridges in the network after each new link is added.

    Input

    The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
    Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
    The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
    The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.

    The last test case is followed by a line containing two zeros.

    Output

    For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.

    Sample Input

    3 2
    1 2
    2 3
    2
    1 2
    1 3
    4 4
    1 2
    2 1
    2 3
    1 4
    2
    1 2
    3 4
    0 0
    

    Sample Output

    Case 1:
    1
    0

    Case 2:
    2
    0
     
    题意:
    有一张无向图,q次操作。每次操作,添加变(x,y),问添加这条边后,有多少个桥。
     
    思路:
    对于给予的图,先进行缩点,新的图一定是一棵树。然后每次操作都是在树上进行操作。
    对于每次操作,可以从x点对应的树上的点出发,进行dfs,在x,y这条链上的点,用并查集合并,
    这样只要判断并查集中根的个数即可。
    /*
     * Author:  sweat123
     * Created Time:  2016/6/22 15:00:44
     * File Name: main.cpp
     */
    #include<set>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<string>
    #include<vector>
    #include<cstdio>
    #include<time.h>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define INF 1<<30
    #define MOD 1000000007
    #define ll long long
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define pi acos(-1.0)
    using namespace std;
    const int MAXN = 100010;
    struct node{
        int to;
        int next;   
    }edge[MAXN<<2]; 
    int pre[MAXN],vis[MAXN],dfn[MAXN],low[MAXN],n,m,ind,pa[MAXN];
    int px[MAXN],py[MAXN],cnt,f[MAXN],num;
    void add(int x,int y){
        edge[ind].to = y;
        edge[ind].next = pre[x];
        pre[x] = ind ++;   
    }
    void init(){
        cnt = 0;
        num = 0;
        memset(f,-1,sizeof(f));
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));   
    }
    int find(int x){
        if(x != pa[x])pa[x] = find(pa[x]);
        return pa[x];   
    }
    void dfs(int rt,int k,int fa){
        dfn[rt] = low[rt] = k;
        for(int i = pre[rt]; i != - 1; i = edge[i].next){
            int t = edge[i].to;
            if(!dfn[t]){
                dfs(t,k+1,rt);
                low[rt] = min(low[rt],low[t]);
                if(low[t] > dfn[rt]){
                    px[cnt] = rt,py[cnt++] = t;   
                } else{
                    int fx = find(rt);
                    int fy = find(t);
                    pa[fx] = fy;   
                }
            } else if(t != fa){
                   low[rt] = min(low[rt],dfn[t]);
            }
        }
    }
    int dfs2(int rt,int k){
        vis[rt] = 1;
        if(rt == k){
            return 1;
        }   
        for(int i = pre[rt]; i != -1; i = edge[i].next){
            int t = edge[i].to;
            if(!vis[t]){
                int p = dfs2(t,k);
                if(p == 1){
                    int fx = find(rt);
                    int fy = find(t);
                    pa[fx] = fy;
                    return 1;      
                }
            }   
        }
        return 0;
    }
    int main(){
        int ff = 0;
        while(~scanf("%d%d",&n,&m)){
            if(n == 0 && m == 0)break;
            ind = 0;
            memset(pre,-1,sizeof(pre));
            for(int i = 1; i <= m; i++){
                int x,y;
                scanf("%d%d",&x,&y);
                add(x,y),add(y,x);
            }
            for(int i = 1; i <= n; i++){
                pa[i] = i;   
            }
            init();
            dfs(1,1,-1);
            for(int i = 1; i <= n; i++){
                int fx = find(i);
                if(f[fx] == -1)f[fx] = ++num;
                f[i] = f[fx];
            }
            ind = 0;
            memset(pre,-1,sizeof(pre));
            for(int i = 0; i < cnt; i++){
                int x = f[px[i]];
                int y = f[py[i]];
                add(x,y),add(y,x);
            }
            int q;
            printf("Case %d:
    ",++ff);
            scanf("%d",&q);
            for(int i = 1; i <= n; i++){
                pa[i] = i;   
            }
            while(q--){
                int x,y;
                scanf("%d%d",&x,&y);
                x = f[x];
                y = f[y];
                memset(vis,0,sizeof(vis));
                dfs2(x,y);
                int ans = 0;
                for(int i = 1; i <= num; i++){
                    int fx = find(i);
                    if(fx == i)ans += 1;
                }   
                printf("%d
    ",ans - 1);
            }
            printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    年纪大了,要学会控制自己的欲望
    java为什么要用类型擦除实现泛型?--c++,java,c# 的泛型是如何实现的
    面向对象:类的成员---只是特定(类的)命名空间的全局变量(函数)而已
    人的意志与自然法则—人的意志与人造事物
    所有的思考都有两个目的:建模降熵
    控制论、系统论与熵
    秩序(也常简称为序)是系统的本质特征之一
    控制论:基于全局信息和整体目标、整体规则的系统结构和状态维护
    人类社会的全部认识成果可以概括为三大领域的科学,即自然科学、社会科学和思维科学
    “逻辑”的古希腊词源
  • 原文地址:https://www.cnblogs.com/sweat123/p/5607724.html
Copyright © 2011-2022 走看看