zoukankan      html  css  js  c++  java
  • Java编程的逻辑 (43)

    本系列文章经补充和完善,已修订整理成书《Java编程的逻辑》,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接http://item.jd.com/12299018.html


    40节介绍了HashMap,我们提到,HashMap有一个重要局限,键值对之间没有特定的顺序,我们还提到,Map接口有另一个重要的实现类TreeMap,在TreeMap中,键值对之间按键有序,TreeMap的实现基础是排序二叉树,上节我们介绍了排序二叉树的基本概念和算法,本节我们来详细讨论TreeMap。

    除了Map接口,因为有序,TreeMap还实现了更多接口和方法,下面,我们先来看TreeMap的用法,然后探讨其内部实现。

    基本用法

    构造方法

    TreeMap有两个基本构造方法:

    public TreeMap()
    public TreeMap(Comparator<? super K> comparator)

    第一个为默认构造方法,如果使用默认构造方法,要求Map中的键实现Comparabe接口,TreeMap内部进行各种比较时会调用键的Comparable接口中的compareTo方法。

    第二个接受一个比较器对象comparator,如果comparator不为null,在TreeMap内部进行比较时会调用这个comparator的compare方法,而不再调用键的compareTo方法,也不再要求键实现Comparable接口。

    应该用哪一个呢?第一个更为简单,但要求键实现Comparable接口,且期望的排序和键的比较结果是一致的,第二个更为灵活,不要求键实现Comparable接口,比较器可以用灵活复杂的方式进行实现。

    需要强调的是,TreeMap是按键而不是按值有序,无论哪一种,都是对键而非值进行比较。

    除了这两个基本构造方法,TreeMap还有如下构造方法:

    public TreeMap(Map<? extends K, ? extends V> m)
    public TreeMap(SortedMap<K, ? extends V> m) 

    关于SortedMap接口,它扩展了Map接口,表示有序的Map,它有一个comparator()方法,返回其比较器,待会我们会进一步介绍。

    这两个构造方法都是接受一个已有的Map,将其所有键值对添加到当前TreeMap中来,区别在于,第一个构造方法中,比较器会设为null,而第二个,比较器会设为和参数SortedMap中的一样。

    接下来,我们来看一些简单的使用TreeMap的例子。

    基本例子

    代码为:

    Map<String, String> map  = new TreeMap<>();
    map.put("a", "abstract");
    map.put("c", "call");
    map.put("b", "basic");
    
    map.put("T", "tree");
    
    for(Entry<String,String> kv : map.entrySet()){
        System.out.print(kv.getKey()+"="+kv.getValue()+" ");
    }

    创建了一个TreeMap,但只是当做Map使用,不过迭代时,其输出却是按键排序的,输出为:

    T=tree a=abstract b=basic c=call 

    T排在最前面,是因为大写字母都小于小写字母。如果希望忽略大小写呢?可以传递一个比较器,String类有一个静态成员CASE_INSENSITIVE_ORDER,它就是一个忽略大小写的Comparator对象,替换第一行代码为:

    Map<String, String> map  = new TreeMap<>(String.CASE_INSENSITIVE_ORDER);

    输出就会变为:

    a=abstract b=basic c=call T=tree 

    正常排序是从小到大,如果希望逆序呢?可以传递一个不同的Comparator对象,第一行代码可以替换为:

    Map<String, String> map  = new TreeMap<>(new Comparator<String>(){
    
        @Override
        public int compare(String o1, String o2) {
            return o2.compareTo(o1);
        }
    });

    这样,输出会变为:

    c=call b=basic a=abstract T=tree 

    为什么这样就可以逆序呢?正常排序中,compare方法内,是o1.compareTo(o2),两个对象翻过来,自然就是逆序了,Collections类有一个静态方法reverseOrder()可以返回一个逆序比较器,也就是说,上面代码也可以替换为:

    Map<String, String> map  = new TreeMap<>(Collections.reverseOrder());

    如果希望逆序且忽略大小写呢?第一行可以替换为:

    Map<String, String> map  = new TreeMap<>(
            Collections.reverseOrder(String.CASE_INSENSITIVE_ORDER));

    需要说明的是,TreeMap使用键的比较结果对键进行排重,即使键实际上不同,但只要比较结果相同,它们就会被认为相同,键只会保存一份。比如,如下代码:

    Map<String, String> map  = new TreeMap<>(String.CASE_INSENSITIVE_ORDER);
    map.put("T", "tree");
    map.put("t", "try");
    
    for(Entry<String,String> kv : map.entrySet()){
        System.out.print(kv.getKey()+"="+kv.getValue()+" ");
    }

    看上去有两个不同的键"T"和"t",但因为比较器忽略大小写,所以只会有一个,输出会是:

    T=try 

    键为第一次put时的,这里即"T",而值为最后一次put时的,这里即"try"。

    日期例子

    我们再来看一个例子,键为字符串形式的日期,值为一个统计数字,希望按照日期输出,代码为:

    Map<String, Integer> map  = new TreeMap<>();
    map.put("2016-7-3", 100);
    map.put("2016-7-10", 120);
    map.put("2016-8-1", 90);
    
    for(Entry<String,Integer> kv : map.entrySet()){
        System.out.println(kv.getKey()+","+kv.getValue());
    }

    输出为:

    2016-7-10,120
    2016-7-3,100
    2016-8-1,90

    7月10号的排在了7月3号的前面,与期望的不符,这是因为,它们是按照字符串比较的,按字符串,2016-7-10就是小于2016-7-3,因为第一个不同之处1小于3。

    怎么解决呢?可以使用一个自定义的比较器,将字符串转换为日期,按日期进行比较,第一行代码可以改为:

    Map<String, Integer> map  = new TreeMap<>(new Comparator<String>() {
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
        
        @Override
        public int compare(String o1, String o2) {
            try {
                return sdf.parse(o1).compareTo(sdf.parse(o2));
            } catch (ParseException e) {
                e.printStackTrace();
                return 0;
            }
        }
    });

    这样,输出就符合期望了,会变为:

    2016-7-3,100
    2016-7-10,120
    2016-8-1,90

    基本用法小结

    以上就是TreeMap的基本用法,与HashMap相比:

    • 相同的是,它们都实现了Map接口,都可以按Map进行操作。
    • 不同的是,迭代时,TreeMap按键有序,为了实现有序,它要求:要么键实现Comparable接口,要么创建TreeMap时传递一个Comparator对象。

    不过,由于TreeMap按键有序,它还支持更多接口和方法,具体来说,它还实现了SortedMap和NavigableMap接口,而NavigableMap接口扩展了SortedMap,我们来看一下这两个接口。

    高级用法

    SortedMap接口

    SortedMap接口的定义为:

    public interface SortedMap<K,V> extends Map<K,V> {
        Comparator<? super K> comparator();
        SortedMap<K,V> subMap(K fromKey, K toKey);
        SortedMap<K,V> headMap(K toKey);
        SortedMap<K,V> tailMap(K fromKey);
        K firstKey();
        K lastKey();
    }

    firstKey返回第一个键,而lastKey返回最后一个键。

    headMap/tailMap/subMap都返回一个视图,视图中包括一部分键值对,它们的区别在于键的取值范围:

    • headMap:为小于toKey的所有键
    • tailMap:为大于等于fromKey的所有键
    • subMap:为大于等于fromKey且小于toKey的所有键。 

    NavigableMap接口

    NavigableMap扩展了SortedMap,主要增加了一些查找邻近键的方法,比如:

    Map.Entry<K,V> floorEntry(K key);
    Map.Entry<K,V> lowerEntry(K key);
    Map.Entry<K,V> ceilingEntry(K key);
    Map.Entry<K,V> higherEntry(K key);

    参数key对应的键不一定存在,但这些方法可能都有返回值,它们都返回一个邻近键值对,它们的区别在于,这个邻近键与参数key的关系。

    • floorEntry:邻近键是小于等于key的键中最大的
    • lowerEntry:邻近键是严格小于key的键中最大的
    • ceilingEntry:邻近键是大于等于key的键中最小的
    • higherEntry:邻近键是严格大于key的键中最小的 

    如果没有对应的邻近键,返回值为null。这些方法也都有对应的只返回键的方法:

    K floorKey(K key);
    K lowerKey(K key);
    K ceilingKey(K key);
    K higherKey(K key);

    相比SortedMap中的方法headMap/tailMap/subMap,NavigableMap也增加了一些方法,以更为明确的方式指定返回值中是否包含边界值,如:

    NavigableMap<K,V> headMap(K toKey, boolean inclusive);
    NavigableMap<K,V> tailMap(K fromKey, boolean inclusive);
    NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                 K toKey,   boolean toInclusive);

    相比SortedMap中对头尾键的基本操作,NavigableMap增加了如下方法:

    Map.Entry<K,V> firstEntry();
    Map.Entry<K,V> lastEntry();
    Map.Entry<K,V> pollFirstEntry();
    Map.Entry<K,V> pollLastEntry();

    firstEntry返回第一个键值对,lastEntry返回最后一个。pollFirstEntry删除并返回第一个键值对,pollLastEntry删除并返回最后一个。

    此外,NavigableMap有如下方法,可以方便的逆序访问:

    NavigableMap<K,V> descendingMap();
    NavigableSet<K> descendingKeySet();

    示例代码

    我们看一段简单的示例代码,逻辑比较简单,就不解释了,主要是增强直观感受,其中输出用注释说明了:

    NavigableMap<String, String> map  = new TreeMap<>();
    map.put("a", "abstract");
    map.put("f", "final");
    map.put("c", "call");
    
    //输出:a=abstract
    System.out.println(map.firstEntry());
    
    //输出:f=final
    System.out.println(map.lastEntry());
    
    //输出:c=call
    System.out.println(map.floorEntry("d"));
    
    //输出:f=final
    System.out.println(map.ceilingEntry("d"));
    
    //输出:{c=call, a=abstract}
    System.out.println(map.descendingMap()
            .subMap("d", false, "a", true));

    了解了TreeMap的用法,接下来,我们来看TreeMap的实现原理。

    基本实现原理

    TreeMap内部是用红黑树实现的,红黑树是一种大致平衡的排序二叉树,上节我们介绍了排序二叉树的基本概念和算法,本节我们主要看TreeMap的一些代码实现,先来看TreeMap的内部组成。

    内部组成

    TreeMap内部主要有如下成员:

    private final Comparator<? super K> comparator;
    private transient Entry<K,V> root = null;
    private transient int size = 0;

    comparator就是比较器,在构造方法中传递,如果没传,就是null。size为当前键值对个数。root指向树的根节点,从根节点可以访问到每个节点,节点的类型为Entry。Entry是TreeMap的一个内部类,其内部成员和构造方法为:

    static final class Entry<K,V> implements Map.Entry<K,V> {
        K key;
        V value;
        Entry<K,V> left = null;
        Entry<K,V> right = null;
        Entry<K,V> parent;
        boolean color = BLACK;
    
        /**
         * Make a new cell with given key, value, and parent, and with
         * {@code null} child links, and BLACK color.
         */
        Entry(K key, V value, Entry<K,V> parent) {
            this.key = key;
            this.value = value;
            this.parent = parent;
        }
    }    

    每个节点除了键(key)和值(value)之外,还有三个引用,分别指向其左孩子(left)、右孩子(right)和父节点(parent),对于根节点,父节点为null,对于叶子节点,孩子节点都为null,还有一个成员color表示颜色,TreeMap是用红黑树实现的,每个节点都有一个颜色,非黑即红。

    了解了TreeMap的内部组成,我们来看一些主要方法的实现代码。

    保存键值对

    put方法的代码稍微有点长,我们分段来看,先看第一段,添加第一个节点的情况:

    public V put(K key, V value) {
        Entry<K,V> t = root;
        if (t == null) {
            compare(key, key); // type (and possibly null) check
    
            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        ...

    当添加第一个节点时,root为null,执行的就是这段代码,主要就是新建一个节点,设置root指向它,size设置为1,modCount++的含义与之前几节介绍的类似,用于迭代过程中检测结构性变化。

    令人费解的是compare调用,compare(key, key);,key与key比,有什么意义呢?我们看compare方法的代码:

    final int compare(Object k1, Object k2) {
        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
            : comparator.compare((K)k1, (K)k2);
    }

    其实,这里的目的不是为了比较,而是为了检查key的类型和null,如果类型不匹配或为null,compare方法会抛出异常。

    如果不是第一次添加,会执行后面的代码,添加的关键步骤是寻找父节点,找父节点根据是否设置了comparator分为两种情况,我们先来看设置了的情况,代码为:

    int cmp;
    Entry<K,V> parent;
    // split comparator and comparable paths
    Comparator<? super K> cpr = comparator;
    if (cpr != null) {
        do {
            parent = t;
            cmp = cpr.compare(key, t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);
        } while (t != null);
    }

    寻找是一个从根节点开始循环的过程,在循环中,cmp保存比较结果,t指向当前比较节点,parent为t的父节点,循环结束后parent就是要找的父节点。

    t一开始指向根节点,从根节点开始比较键,如果小于根节点,就将t设为左孩子,与左孩子比较,大于就与右孩子比较,就这样一直比,直到t为null或比较结果为0。如果比较结果为0,表示已经有这个键了,设置值,然后返回。如果t为null,则当退出循环时,parent就指向待插入节点的父节点。

    我们再来看没有设置comparator的情况,代码为:

    else {
        if (key == null)
            throw new NullPointerException();
        Comparable<? super K> k = (Comparable<? super K>) key;
        do {
            parent = t;
            cmp = k.compareTo(t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);
        } while (t != null);
    }

    基本逻辑是一样的,当退出循环时parent指向父节点,只是,如果没有设置comparator,则假设key一定实现了Comparable接口,使用Comparable接口的compareTo方法进行比较。

    找到父节点后,就是新建一个节点,根据新的键与父节点键的比较结果,插入作为左孩子或右孩子,并增加size和modCount,代码如下:

    Entry<K,V> e = new Entry<>(key, value, parent);
    if (cmp < 0)
        parent.left = e;
    else
        parent.right = e;
    fixAfterInsertion(e);
    size++;
    modCount++;

    代码大部分都容易理解,不过,里面有一行重要调用fixAfterInsertion(e);,它就是在调整树的结构,使之符合红黑树的约束,保持大致平衡,其代码我们就不介绍了。

    稍微总结一下,其基本思路就是,循环比较找到父节点,并插入作为其左孩子或右孩子,然后调整保持树的大致平衡。

    根据键获取值

    代码为:

    public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }

    就是根据key找对应节点p,找到节点后获取值p.value,来看getEntry的代码:

    final Entry<K,V> getEntry(Object key) {
        // Offload comparator-based version for sake of performance
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

    如果comparator不为空,调用单独的方法getEntryUsingComparator,否则,假定key实现了Comparable接口,使用接口的compareTo方法进行比较,找的逻辑也很简单,从根开始找,小于往左边找,大于往右边找,直到找到为止,如果没找到,返回null。getEntryUsingComparator方法的逻辑是类似,就不赘述了。

    查看是否包含某个值

    TreeMap可以高效的按键进行查找,但如果要根据值进行查找,则需要遍历,我们来看代码:

    public boolean containsValue(Object value) {
        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }

    主体就是一个循环遍历,getFirstEntry方法返回第一个节点,successor方法返回给定节点的后继节点,valEquals就是比较值,从第一个节点开始,逐个进行比较,直到找到为止,如果循环结束也没找到则返回false。

    getFirstEntry的代码为:

    final Entry<K,V> getFirstEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.left != null)
                p = p.left;
        return p;
    }

    代码很简单,第一个节点就是最左边的节点。

    上节我们介绍过找后继的算法,successor的具体代码为:

    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
        if (t == null)
            return null;
        else if (t.right != null) {
            Entry<K,V> p = t.right;
            while (p.left != null)
                p = p.left;
            return p;
        } else {
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.right) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
    }

    上节后继算法所述,有两种情况:

    • 如果有右孩子(t.right!=null),则后继为右子树中最小的节点。
    • 如果没有右孩子,后继为某祖先节点,从当前节点往上找,如果它是父节点的右孩子,则继续找父节点,直到它不是右孩子或父节点为空,第一个非右孩子节点的父亲节点就是后继节点,如果父节点为空,则后继为null。 

    代码与算法是对应的,就不再赘述了,下面重复一下上节的一个后继图(绿色箭头表示后继)以方便对照:


    根据键删除键值对

    删除的代码为:

    public V remove(Object key) {
        Entry<K,V> p = getEntry(key);
        if (p == null)
            return null;
    
        V oldValue = p.value;
        deleteEntry(p);
        return oldValue;
    }

    根据key找到节点,调用deleteEntry删除节点,然后返回原来的值。

    上节介绍过节点删除的算法,节点有三种情况:

    1. 叶子节点:这个容易处理,直接修改父节点对应引用置null即可。
    2. 只有一个孩子:就是在父亲节点和孩子节点直接建立链接。
    3. 有两个孩子:先找到后继,找到后,替换当前节点的内容为后继节点,然后再删除后继节点,因为这个后继节点一定没有左孩子,所以就将两个孩子的情况转换为了前面两种情况。 

    deleteEntry的具体代码也稍微有点长,我们分段来看:

    private void deleteEntry(Entry<K,V> p) {
        modCount++;
        size--;
    
        // If strictly internal, copy successor's element to p and then make p
        // point to successor.
        if (p.left != null && p.right != null) {
            Entry<K,V> s = successor(p);
            p.key = s.key;
            p.value = s.value;
            p = s;
        } // p has 2 children

    这里处理的就是两个孩子的情况,s为后继,当前节点p的key和value设置为了s的key和value,然后将待删节点p指向了s,这样就转换为了一个孩子或叶子节点的情况。

    再往下看一个孩子情况的代码:

    // Start fixup at replacement node, if it exists.
    Entry<K,V> replacement = (p.left != null ? p.left : p.right);
    
    if (replacement != null) {
        // Link replacement to parent
        replacement.parent = p.parent;
        if (p.parent == null)
            root = replacement;
        else if (p == p.parent.left)
            p.parent.left  = replacement;
        else
            p.parent.right = replacement;
    
        // Null out links so they are OK to use by fixAfterDeletion.
        p.left = p.right = p.parent = null;
    
        // Fix replacement
        if (p.color == BLACK)
            fixAfterDeletion(replacement);
    } else if (p.parent == null) { // return if we are the only node.

    p为待删节点,replacement为要替换p的孩子节点,主体代码就是在p的父节点p.parent和replacement之间建立链接,以替换p.parent和p原来的链接,如果p.parent为null,则修改root以指向新的根。fixAfterDeletion重新平衡树。

    最后来看叶子节点的情况:

    } else if (p.parent == null) { // return if we are the only node.
        root = null;
    } else { //  No children. Use self as phantom replacement and unlink.
        if (p.color == BLACK)
            fixAfterDeletion(p);
    
        if (p.parent != null) {
            if (p == p.parent.left)
                p.parent.left = null;
            else if (p == p.parent.right)
                p.parent.right = null;
            p.parent = null;
        }
    }

    再具体分为两种情况,一种是删除最后一个节点,修改root为null,否则就是根据待删节点是父节点的左孩子还是右孩子,相应的设置孩子节点为null。

    实现原理小结

    以上就是TreeMap的基本实现原理,与上节介绍的排序二叉树的基本概念和算法是一致的,只是TreeMap用了红黑树。

    TreeMap特点分析

    与HashMap相比,TreeMap同样实现了Map接口,但内部使用红黑树实现,红黑树是统计效率比较高的大致平衡的排序二叉树,这决定了它有如下特点:

    • 按键有序,TreeMap同样实现了SortedMap和NavigableMap接口,可以方便的根据键的顺序进行查找,如第一个、最后一个、某一范围的键、邻近键等。
    • 为了按键有序,TreeMap要求键实现Comparable接口或通过构造方法提供一个Comparator对象。
    • 根据键保存、查找、删除的效率比较高,为O(h),h为树的高度,在树平衡的情况下,h为log2(N),N为节点数。

    应该用HashMap还是TreeMap呢?不要求排序,优先考虑HashMap,要求排序,考虑TreeMap。

    小结

    本节介绍了TreeMap的用法和实现原理,在用法方面,它实现了Map接口,但按键有序,同样实现了SortedMap和NavigableMap接口,在内部实现上,它使用红黑树,整体效率比较高。

    HashMap有对应的TreeMap,HashSet也有对应的TreeSet,下节,我们来看TreeSet。

    ---------------

    未完待续,查看最新文章,敬请关注微信公众号“老马说编程”(扫描下方二维码),从入门到高级,深入浅出,老马和你一起探索Java编程及计算机技术的本质。用心原创,保留所有版权。

  • 相关阅读:
    12.使用正则表达式
    12/12
    thinkphp 5 及一下或php项目里实现模糊查询
    mysql中文乱码--存入mysql里的中文变成问号的解决办法
    ATOM使用的一点心得与技巧——在一个窗口打开多个项目
    php里的$this的 含义
    pycharm2017.3专业版激活注册码
    thinkphp3.2.3的使用心得之i方法(零)
    thinkphp3.2.3的使用心得(零)
    linux系统下phpstudy里的mysql使用方法
  • 原文地址:https://www.cnblogs.com/swiftma/p/5975943.html
Copyright © 2011-2022 走看看