1. HBase读写的方式概况
主要分为:
- 纯Java API读写HBase的方式;
- Spark读写HBase的方式;
- Flink读写HBase的方式;
- HBase通过Phoenix读写的方式;
第一种方式是HBase自身提供的比较原始的高效操作方式,而第二、第三则分别是Spark、Flink集成HBase的方式,最后一种是第三方插件Phoenix集成的JDBC方式,Phoenix集成的JDBC操作方式也能在Spark、Flink中调用。
注意:
这里我们使用HBase2.1.2版本,spark2.4版本,scala-2.12版本,以下代码都是基于该版本开发的。
2. Spark上读写HBase
Spark上读写HBase主要分为新旧两种API,另外还有批量插入HBase的,通过Phoenix操作HBase的。
2.1 spark读写HBase的新旧API
2.1.1 spark写数据到HBase
使用旧版本saveAsHadoopDataset保存数据到HBase上。
/** * saveAsHadoopDataset */ def writeToHBase(): Unit ={ // 屏蔽不必要的日志显示在终端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) /* spark2.0以前的写法 val conf = new SparkConf().setAppName("SparkToHBase").setMaster("local") val sc = new SparkContext(conf) */ val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local[4]").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" //创建HBase配置 val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") //设置zookeeper集群,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置 hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") //设置zookeeper连接端口,默认2181 hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName) //初始化job,设置输出格式,TableOutputFormat 是 org.apache.hadoop.hbase.mapred 包下的 val jobConf = new JobConf(hbaseConf) jobConf.setOutputFormat(classOf[TableOutputFormat]) val dataRDD = sc.makeRDD(Array("12,jack,16", "11,Lucy,15", "15,mike,17", "13,Lily,14")) val data = dataRDD.map{ item => val Array(key, name, age) = item.split(",") val rowKey = key.reverse val put = new Put(Bytes.toBytes(rowKey)) /*一个Put对象就是一行记录,在构造方法中指定主键 * 所有插入的数据 须用 org.apache.hadoop.hbase.util.Bytes.toBytes 转换 * Put.addColumn 方法接收三个参数:列族,列名,数据*/ put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(name)) put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(age)) (new ImmutableBytesWritable(), put) } //保存到HBase表 data.saveAsHadoopDataset(jobConf) sparkSession.stop() }
使用新版本saveAsNewAPIHadoopDataset保存数据到HBase上
a.txt文件内容为:
100,hello,20 101,nice,24 102,beautiful,26
/** * saveAsNewAPIHadoopDataset */ def writeToHBaseNewAPI(): Unit ={ // 屏蔽不必要的日志显示在终端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local[4]").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableOutputFormat.OUTPUT_TABLE, tableName) val jobConf = new JobConf(hbaseConf) //设置job的输出格式 val job = Job.getInstance(jobConf) job.setOutputKeyClass(classOf[ImmutableBytesWritable]) job.setOutputValueClass(classOf[Result]) job.setOutputFormatClass(classOf[org.apache.hadoop.hbase.mapreduce.TableOutputFormat[ImmutableBytesWritable]]) val input = sc.textFile("v2120/a.txt") val data = input.map{item => val Array(key, name, age) = item.split(",") val rowKey = key.reverse val put = new Put(Bytes.toBytes(rowKey)) put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(name)) put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(age)) (new ImmutableBytesWritable, put) } //保存到HBase表 data.saveAsNewAPIHadoopDataset(job.getConfiguration) sparkSession.stop() }
2.1.2 spark从HBase读取数据
使用newAPIHadoopRDD从hbase中读取数据,可以通过scan过滤数据
/** * scan */ def readFromHBaseWithHBaseNewAPIScan(): Unit ={ //屏蔽不必要的日志显示在终端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableInputFormat.INPUT_TABLE, tableName) val scan = new Scan() scan.addFamily(Bytes.toBytes("cf1")) val proto = ProtobufUtil.toScan(scan) val scanToString = new String(Base64.getEncoder.encode(proto.toByteArray)) hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableInputFormat.SCAN, scanToString) //读取数据并转化成rdd TableInputFormat是org.apache.hadoop.hbase.mapreduce包下的 val hbaseRDD = sc.newAPIHadoopRDD(hbaseConf, classOf[org.apache.hadoop.hbase.mapreduce.TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result]) val dataRDD = hbaseRDD .map(x => x._2) .map{result => (result.getRow, result.getValue(Bytes.toBytes("cf1"), Bytes.toBytes("name")), result.getValue(Bytes.toBytes("cf1"), Bytes.toBytes("age"))) }.map(row => (new String(row._1), new String(row._2), new String(row._3))) .collect() .foreach(r => (println("rowKey:"+r._1 + ", name:" + r._2 + ", age:" + r._3))) }
2.2 spark利用BulkLoad往HBase批量插入数据
BulkLoad原理是先利用mapreduce在hdfs上生成相应的HFlie文件,然后再把HFile文件导入到HBase中,以此来达到高效批量插入数据。
/** * 批量插入 多列 */ def insertWithBulkLoadWithMulti(): Unit ={ val sparkSession = SparkSession.builder().appName("insertWithBulkLoad").master("local[4]").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName) val conn = ConnectionFactory.createConnection(hbaseConf) val admin = conn.getAdmin val table = conn.getTable(TableName.valueOf(tableName)) val job = Job.getInstance(hbaseConf) //设置job的输出格式 job.setMapOutputKeyClass(classOf[ImmutableBytesWritable]) job.setMapOutputValueClass(classOf[KeyValue]) job.setOutputFormatClass(classOf[HFileOutputFormat2]) HFileOutputFormat2.configureIncrementalLoad(job, table, conn.getRegionLocator(TableName.valueOf(tableName))) val rdd = sc.textFile("v2120/a.txt") .map(_.split(",")) .map(x => (DigestUtils.md5Hex(x(0)).substring(0, 3) + x(0), x(1), x(2))) .sortBy(_._1) .flatMap(x => { val listBuffer = new ListBuffer[(ImmutableBytesWritable, KeyValue)] val kv1: KeyValue = new KeyValue(Bytes.toBytes(x._1), Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(x._2 + "")) val kv2: KeyValue = new KeyValue(Bytes.toBytes(x._1), Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(x._3 + "")) listBuffer.append((new ImmutableBytesWritable, kv2)) listBuffer.append((new ImmutableBytesWritable, kv1)) listBuffer } ) //多列的排序,要按照列名字母表大小来 isFileExist("hdfs://node1:9000/test", sc) rdd.saveAsNewAPIHadoopFile("hdfs://node1:9000/test", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat2], job.getConfiguration) val bulkLoader = new LoadIncrementalHFiles(hbaseConf) bulkLoader.doBulkLoad(new Path("hdfs://node1:9000/test"), admin, table, conn.getRegionLocator(TableName.valueOf(tableName))) } /** * 判断hdfs上文件是否存在,存在则删除 */ def isFileExist(filePath: String, sc: SparkContext): Unit ={ val output = new Path(filePath) val hdfs = FileSystem.get(new URI(filePath), new Configuration) if (hdfs.exists(output)){ hdfs.delete(output, true) } }
2.3 spark利用Phoenix往HBase读写数据
利用Phoenix,就如同msyql等关系型数据库的写法,需要写jdbc
def readFromHBaseWithPhoenix: Unit ={ //屏蔽不必要的日志显示在终端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val sparkSession = SparkSession.builder().appName("SparkHBaseDataFrame").master("local[4]").getOrCreate() //表小写,需要加双引号,否则报错 val dbTable = ""test"" //spark 读取 phoenix 返回 DataFrame的第一种方式 val rdf = sparkSession.read .format("jdbc") .option("driver", "org.apache.phoenix.jdbc.PhoenixDriver") .option("url", "jdbc:phoenix:192.168.187.201:2181") .option("dbtable", dbTable) .load() val rdfList = rdf.collect() for (i <- rdfList){ println(i.getString(0) + " " + i.getString(1) + " " + i.getString(2)) } rdf.printSchema() //spark 读取 phoenix 返回 DataFrame的第二种方式 val df = sparkSession.read .format("org.apache.phoenix.spark") .options(Map("table" -> dbTable, "zkUrl" -> "192.168.187.201:2181")) .load() df.printSchema() val dfList = df.collect() for (i <- dfList){ println(i.getString(0) + " " + i.getString(1) + " " + i.getString(2)) } //spark DataFrame 写入 phoenix,需要先建好表 /*df.write .format("org.apache.phoenix.spark") .mode(SaveMode.Overwrite) .options(Map("table" -> "PHOENIXTESTCOPY", "zkUrl" -> "jdbc:phoenix:192.168.187.201:2181")) .save() */ sparkSession.stop() }
3. 总结
HBase连接的几种方式(一)java篇 可以查看纯Java API读写HBase
HBase读写的几种方式(三)flink篇 可以查看flink读写HBase
【github地址】
https://github.com/SwordfallYeung/HBaseDemo
【参考资料】
https://my.oschina.net/uchihamadara/blog/2032481
https://www.cnblogs.com/simple-focus/p/6879971.html
https://www.cnblogs.com/MOBIN/p/5559575.html
https://blog.csdn.net/Suubyy/article/details/80892023
https://www.jianshu.com/p/b09283b14d84
https://www.jianshu.com/p/8e3fdf70dc06
https://www.cnblogs.com/wumingcong/p/6044038.html
https://blog.csdn.net/zhuyu_deng/article/details/43192271
https://www.jianshu.com/p/4c908e419b60
https://blog.csdn.net/Colton_Null/article/details/83387995
https://www.jianshu.com/p/b09283b14d84
https://cloud.tencent.com/developer/article/1189464
https://blog.bcmeng.com/post/hbase-bulkload.html Hive数据源使用的HDFS集群和HBase表使用的HDFS集群不是同一个集群的做法